The Kinematics of Massive Stars and Circumstellar Material in the Carina Nebula

Total Page:16

File Type:pdf, Size:1020Kb

The Kinematics of Massive Stars and Circumstellar Material in the Carina Nebula The Kinematics of Massive Stars and Circumstellar Material in the Carina Nebula Item Type text; Electronic Dissertation Authors Kiminki, Megan Michelle Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 12:24:30 Link to Item http://hdl.handle.net/10150/625635 THE KINEMATICS OF MASSIVE STARS AND CIRCUMSTELLAR MATERIAL IN THE CARINA NEBULA by Megan Michelle Kiminki Copyright c Megan Michelle Kiminki 2017 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ASTRONOMY AND ASTROPHYSICS In the Graduate College THE UNIVERSITY OF ARIZONA 2017 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the disser- tation prepared by Megan Michelle Kiminki, titled The Kinematics of Massive Stars and Circumstellar Material in the Carina Nebula and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 27 June 2017 Nathan Smith Date: 27 June 2017 Daniel Marrone Date: 27 June 2017 Kaitlin Kratter Date: 27 June 2017 Catharine Garmany Date: 27 June 2017 Marcia Rieke Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Date: 27 June 2017 Dissertation Director: Nathan Smith 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Megan Michelle Kiminki 4 ACKNOWLEDGEMENTS This dissertation would not exist without the invaluable guidance and encourage- ment of my advisor, Nathan Smith. Thank you for taking on a nervous third-year with an interest in massive stars. I would also like to thank the members of my committee: Dan Marrone, for a listening ear when I needed it; Katy Garmany, for jumping in with extraordinary enthusiasm; Kaitlin Kratter, for the single most useful tip on writing an introduction; Marcia Rieke, for helping out at the last minute; George Rieke, for the advising that got me through my prelim; and Josh Eisner, who also couldn’t be there at the end but offered support along the way. We would all have been lost without the tireless work of Michelle Cournoyer, program coordinator extraordinaire. Many thanks are owed to my collaborators and most especially to Megan Reiter, who—among many other things—reminded me that talking science can be fun. I will be forever grateful to Jay Anderson for sharing his code and teaching me the secrets of aligning HST images. I am also indebted to the Yale SMARTS team, particularly Emily MacPherson, for scheduling my CHIRON observations, and the telescope operators at CTIO who carried out those observations. Thank you to my fellow Steward grad students for your friendship and support. Michelle Wilson, office- and trailer-mate—we made it! Vanessa Bailey and Amanda Ford were there when the going got rough. Kate Follette has been an amazing role model and landlord. Johanna Teske’s enthusiasm about all my endeavors, both inside and outside of academia, helped so much. And Nick Ballering introduced me to BibTeX, which no dissertation-writer should ever have to do without. Thank you to my dad, for reading all my papers, and to my mom, for always being proud of me. Most of all, thank you to Dan, the most wonderful partner anyone could ever ask for. Support for the research in this dissertation was provided by NASA grants GO- 13390 and GO-13791 from the Space Telescope Science Institute, which is oper- ated by the Association of Universities for Research in Astronomy (AURA) under NASA contract NAS 5-26555. This work is based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the Data Archive at the Space Telescope Science Institute, and on observations made at Cerro Tololo Inter- American Observatory, National Optical Astronomy Observatory (NOAO Proposal IDs 2014B-0235 and 2015B-0141), which is operated by AURA under a cooperative agreement with the National Science Foundation. 5 DEDICATION For Dan, my strength. For Ian, my joy. For the one on the way. 6 TABLE OF CONTENTS LISTOFFIGURES ................................ 8 LISTOFTABLES ................................. 9 ABSTRACT .................................... 10 CHAPTER1 INTRODUCTION . .. .. 11 1.1 FeedbackfromMassiveStars. 12 1.1.1 Feedbackmechanisms. 12 1.1.2 Triggered star formation . 19 1.2 TheCarinaNebula ............................ 21 1.2.1 Structure and stellar content . 22 1.2.2 The luminous blue variable η Carinae.............. 27 1.3 OBAssociations.............................. 30 1.4 Dissertation Overview . 33 CHAPTER 2 ANCIENT ERUPTIONS OF η CARINAE: A TALE WRITTEN INPROPERMOTIONS............................ 34 2.1 Introduction................................ 35 2.2 Observations and Analysis . 38 2.2.1 HST ACS............................. 38 2.2.2 HST WFPC2........................... 42 2.2.3 Position of the central source . 46 2.3 Results................................... 46 2.3.1 HST proper motions over two decades . 46 2.3.2 Agesoftheouterejecta . 50 2.3.3 Asymmetry and the most distant ejecta . 57 2.4 Discussion................................. 59 2.4.1 Comparison to radial velocities . 59 2.4.2 Relationship to X-ray emission and the extremely fast ejecta . 59 2.4.3 Alternate ejection histories . 62 2.4.4 Implications for models of η Car................. 64 2.5 Conclusions ................................ 65 7 TABLE OF CONTENTS – Continued CHAPTER 3 PROPER MOTIONS OF FIVE OB STARS WITH CANDI- DATE DUSTY BOW SHOCKS IN THE CARINA NEBULA . 67 3.1 Introduction................................ 68 3.2 Observations and Analysis . 73 3.2.1 HST ACSimaging ........................ 73 3.2.2 Image alignment and stacking . 75 3.2.3 Measuring local proper motions of saturated stars . 76 3.3 Results................................... 80 3.4 Discussion................................. 85 3.4.1 Proper motions as upper limits . 85 3.4.2 Comparison to absolute proper motions . 87 3.4.3 Interpreting bow shocks in giant H II regions . 91 3.4.4 Implications for the origins of OB associations . 93 3.5 Conclusions ................................ 94 CHAPTER 4 A RADIAL VELOCITY SURVEY OF THE CARINA NEB- ULA’SO-TYPESTARS ............................ 95 4.1 Introduction................................ 96 4.2 ObservationsandDataAnalysis . 100 4.2.1 Target selection . 100 4.2.2 Spectroscopy ........................... 100 4.2.3 New radial velocities . 101 4.2.4 Radial velocities from the literature . 108 4.3 NewandUpdatedBinaryOrbits . 111 4.3.1 HD92607 ............................. 114 4.3.2 HD93576 ............................. 117 4.3.3 HDE303312............................ 119 4.3.4 HDE305536............................ 122 4.3.5 Additional spectroscopic binaries . 122 4.4 Results and Discussion . 125 4.4.1 Distribution of stellar radial velocities . 125 4.4.2 Variations between clusters . 128 4.4.3 Comparison to molecular gas . 131 4.4.4 Comparison to ionized gas . 141 4.5 Conclusions ................................ 142 CHAPTER 5 SUMMARY AND FUTURE PROSPECTS . 145 REFERENCES................................... 149 8 LIST OF FIGURES 2.1 HST WFPC2 F658N image of η Caranditsouterejecta . 37 2.2 ACS 2005–2014 and WFPC2 1993–2001 difference images . 40 2.3 Boxes used to measure proper motions of the E condensations . ... 43 2.4 Histogramsofejectapropermotions. 47 2.5 Proper motion versus time for three representative features ...... 49 2.6 Comparison to Thackeray (1950)images ................ 51 2.7 Proper motion vectors color-coded by apparent ejection date ..... 53 2.8 Transverse velocity versus projected distance from η Car . 54 2.9 Histogramsofapparentejectiondates. 56 2.10 EjectaoutsidetheprimaryACSfootprint. 58 2.11 Proper motion vectors overlaid on soft X-ray emission . .. 60 3.1 HST ACS fields across the Carina Nebula . 74 3.2 Differenceimagesandbest-fitpixeloffsets . 77 3.3 Spitzer IRAC images showing bow shock orientations . 83 3.4 Comparisontoabsolutepropermotions. 88 3.5 Comparison to Gaia DR1 corrected to a local reference frame . 90 4.1 O-type and evolved massive stars in the Carina Nebula . 97 4.2 Representative CHIRON spectra of four O-type stars . ... 102 4.3 HD 92607 He I λ5876inphaseorder .................. 115 4.4 HD92607RVcurveandorbitalsolution . 116 4.5 HD93576RVcurveandorbitalsolution . 118 4.6 HDE303312RVcurveandorbitalsolutions
Recommended publications
  • The Effect of the Apsidal Motion on the Light Curve of the Close Binary HD 93205 (O3V+O8V)?
    A&A 397, 921–925 (2003) Astronomy DOI: 10.1051/0004-6361:20021438 & c ESO 2003 Astrophysics The effect of the apsidal motion on the light curve of the close binary HD 93205 (O3V+O8V)? A. M. van Genderen?? Leiden Observatory, Postbus 9513, 2300 RA Leiden, The Netherlands Received 25 June 2002/Accepted 28 August 2002 Abstract. The 1982–1985 photometry (VBLUW system) of the O3V+O8V close binary HD 93205 has been rediscussed be- cause of new insights into its true nature and orbital changes. By comparing this data set with the one obtained by Antokhina et al. (2000) in 1993, and using the same ephemeris to construct the light curve in the phase diagram, the effect of the apsidal motion became obvious: a phase shift between the two light curves and a small change of the shape. A phase-locked light variationintheL passband (containing the higher Balmer lines) is clearly present in the 1982–1985 data set and is presumably due to absorption if the O8 star is seen through cooler inter-binary gas, e.g. the bow-shock between the two colliding winds. Key words. stars: variables: general – stars: binaries: close – stars: early-type – stars: individual: HD 93205 1. Introduction Sect. 2). So far only the observations in the V band relative to the comparison star were published (Papers I, IX). The phase HD 93205 (O3V+O8V) is the earliest known system for which diagrams of the 1982–1985 and 1993 data sets, the latter from an RV is known, of which the first was presented by Conti & Antokhina et al.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • The Low-Mass Content of the Massive Young Star Cluster RCW&Thinsp
    MNRAS 471, 3699–3712 (2017) doi:10.1093/mnras/stx1906 Advance Access publication 2017 July 27 The low-mass content of the massive young star cluster RCW 38 Koraljka Muziˇ c,´ 1,2‹ Rainer Schodel,¨ 3 Alexander Scholz,4 Vincent C. Geers,5 Ray Jayawardhana,6 Joana Ascenso7,8 and Lucas A. Cieza1 1Nucleo´ de Astronom´ıa, Facultad de Ingenier´ıa, Universidad Diego Portales, Av. Ejercito 441, Santiago, Chile 2SIM/CENTRA, Faculdade de Ciencias de Universidade de Lisboa, Ed. C8, Campo Grande, P-1749-016 Lisboa, Portugal 3Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Glorieta de la Astronoma´ s/n, E-18008 Granada, Spain 4SUPA, School of Physics & Astronomy, St. Andrews University, North Haugh, St Andrews KY16 9SS, UK 5UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 6Faculty of Science, York University, 355 Lumbers Building, 4700 Keele Street, Toronto, ON M3J 1P2, Canada 7CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, P-1049-001 Lisbon, Portugal 8Departamento de Engenharia F´ısica da Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, P-4200-465 Porto, Portugal Accepted 2017 July 24. Received 2017 July 24; in original form 2017 February 3 ABSTRACT RCW 38 is a deeply embedded young (∼1 Myr), massive star cluster located at a distance of 1.7 kpc. Twice as dense as the Orion nebula cluster, orders of magnitude denser than other nearby star-forming regions and rich in massive stars, RCW 38 is an ideal place to look for potential differences in brown dwarf formation efficiency as a function of environment.
    [Show full text]
  • First Embedded Cluster Formation in California Molecular Cloud
    DRAFT VERSION MARCH 24, 2020 Typeset using LATEX twocolumn style in AASTeX62 First embedded cluster formation in California molecular cloud JIN-LONG XU,1, 2 YE XU,3 PENG JIANG,1, 2 MING ZHU,1, 2 XIN GUAN,1, 2 NAIPING YU,1 GUO-YIN ZHANG,1 AND DENG-RONG LU3 1National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 2CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 3Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China (Received xx xx, 2019; Revised xx xx, 2019; Accepted xx xx, 2019) ABSTRACT We performed a multi-wavelength observation toward LkHα 101 embedded cluster and its adjacent 850× 600 region. The LkHα 101 embedded cluster is the first and only one significant cluster in California molecular cloud (CMC). These observations have revealed that the LkHα 101 embedded cluster is just located at the projected intersectional region of two filaments. One filament is the highest-density section of the CMC, the other is a new identified filament with a low-density gas emission. Toward the projected intersection, we find the bridging features connecting the two filaments in velocity, and identify a V-shape gas structure. These agree with the scenario that the two filaments are colliding with each other. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we measured that the RRL velocity of the LkH 101 H II region is 0.5 km s−1, which is related to the velocity component of the CMC filament. Moreover, there are some YSOs distributed outside the intersectional region.
    [Show full text]
  • The Sky Tonight
    MARCH POUTŪ-TE-RANGI HIGHLIGHTS Conjunction of Saturn and the Moon A conjunction is when two astronomical objects appear close in the sky as seen THE- SKY TONIGHT- - from Earth. The planets, along with the TE AHUA O TE RAKI I TENEI PO Sun and the Moon, appear to travel across Brightest Stars our sky roughly following a path called the At this time of the year, we can see the ecliptic. Each body travels at its own speed, three brightest stars in the night sky. sometimes entering ‘retrograde’ where they The brightness of a star, as seen from seem to move backwards for a period of time Earth, is measured as its apparent (though the backwards motion is only from magnitude. Pictured on the cover is our vantage point, and in fact the planets Sirius, the brightest star in our night sky, are still orbiting the Sun normally). which is 8.6 light-years away. Sometimes these celestial bodies will cross With an apparent magnitude of −1.46, paths along the ecliptic line and occupy the this star can be found in the constellation same space in our sky, though they are still Canis Major, high in the northern sky. millions of kilometres away from each other. Sirius is actually a binary star system, consisting of Sirius A which is twice the On March 19, the Moon and Saturn will be size of the Sun, and a faint white dwarf in conjunction. While the unaided eye will companion named Sirius B. only see Saturn as a bright star-like object (Saturn is the eighth brightest object in our Sirius is almost twice as bright as the night sky), a telescope can offer a spectacular second brightest star in the night sky, view of the ringed planet close to our Moon.
    [Show full text]
  • The Arches Cluster out to Its Tidal Radius: Dynamical Mass Segregation and the Effect of the Extinction Law on the Stellar Mass Function
    Astronomy & Astrophysics manuscript no. aa˙paper c ESO 2018 October 31, 2018 The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function. ? M. Habibi1;3 , A. Stolte1 , W. Brandner2 , B. Hußmann1 , K. Motohara4 1 Argelander Institut fur¨ Astronomie, Universitat¨ Bonn, Auf dem Hugel¨ 71, 53121 Bonn, Germany e-mail: [mhabibi;astolte;hussmann]@astro.uni-bonn.de 2 Max-Planck-Institut fur¨ Astronomie, Konigsstuhl¨ 17, 69117 Heidelberg, Germany e-mail: [email protected] 3 Member of the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. 4 Institute of Astronomy, The University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015, Japan e-mail: [email protected] Received Oct 14, 2012; accepted May 13, 2013 ABSTRACT The Galactic center is the most active site of star formation in the Milky Way Galaxy, where particularly high-mass stars have formed very recently and are still forming today. However, since we are looking at the Galactic center through the Galactic disk, knowledge of extinction is crucial when studying this region. The Arches cluster is a young, massive starburst cluster near the Galactic center. We observed the Arches cluster out to its tidal radius using Ks-band imaging obtained with NAOS/CONICA at the VLT combined with Subaro/Cisco J-band data to gain a full understanding of the cluster mass distribution. We show that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law.
    [Show full text]
  • On the Detection of Exoplanets Via Radial Velocity Doppler Spectroscopy
    The Downtown Review Volume 1 Issue 1 Article 6 January 2015 On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy Joseph P. Glaser Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Astrophysics and Astronomy Commons How does access to this work benefit ou?y Let us know! Recommended Citation Glaser, Joseph P.. "On the Detection of Exoplanets via Radial Velocity Doppler Spectroscopy." The Downtown Review. Vol. 1. Iss. 1 (2015) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol1/iss1/6 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Glaser: Detection of Exoplanets 1 Introduction to Exoplanets For centuries, some of humanity’s greatest minds have pondered over the possibility of other worlds orbiting the uncountable number of stars that exist in the visible universe. The seeds for eventual scientific speculation on the possibility of these "exoplanets" began with the works of a 16th century philosopher, Giordano Bruno. In his modernly celebrated work, On the Infinite Universe & Worlds, Bruno states: "This space we declare to be infinite (...) In it are an infinity of worlds of the same kind as our own." By the time of the European Scientific Revolution, Isaac Newton grew fond of the idea and wrote in his Principia: "If the fixed stars are the centers of similar systems [when compared to the solar system], they will all be constructed according to a similar design and subject to the dominion of One." Due to limitations on observational equipment, the field of exoplanetary systems existed primarily in theory until the late 1980s.
    [Show full text]
  • Star Formation at the Galactic Center
    Star Formation at the Galactic Center Mark Morris UCLA Outline § The Arena – central molecular zone, & the twisted ring § General dearth of star formation, relative to amount of gas § Orbital infuence on star formation § Mode of star formation: Massive young clusters vs. isolated YSOs § Star formation in the Central parsec § Cyclical star formation in the central parsec ? § Magnetic felds – a pitch for HAWC+ The inner Central Molecular Zone Molinari et al. 2011 … Herschel/SPIRE 250 µm Martin et al. 2004 7 CMZ: ~3 x 10 M8, ±170 pc Warm, turbulent molecular gas" Having large-scale order." overhead view of the! Molinari et al. 2011 twisted ring" Simulation of gas ! distribution in the CMZ" (Sungsoo Kim + 2011)" Henshaw et al. 2016 Top: HNCO, extracted using SCOUSE* *SCOUSE: Semi-automated mul-COmponent Universal Spectral-line fing Engine H2 column density contours from Herschel observations Color-coded to show velocity dispersion. Possible models: Henshaw et al. 2016 (Batersby et al., in prep) Henshaw+16 u Gas distribution dominated by two roughly parallel extended features in longitude-velocity space. u Henshaw+16 à the bulk of molecular line emission associated with the 20 & 50 km/s clouds is just a small segment of one of the extended features, in agreement with the Kruijssen+15 orbit, which places the clouds at a Galactocentric radius of ∼60 pc. u But this in inconsistent with the evidence that Sgr A East is interacting with the 50 km/s cloud and that the 20 km/s cloud is feeding gas into the central parsecs. Star Formation in the CMZ ♦ It has been known for some time that the CMZ has a much higher ratio of dense gas mass to star-formation tracers than elsewhere in the Galaxy [Morris 1989, 1993, Lis & Carlstrom 1994, Yusef-Zadeh et al.
    [Show full text]
  • Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected
    Draft version February 28, 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 SULFUR HAZES IN GIANT EXOPLANET ATMOSPHERES: IMPACTS ON REFLECTED LIGHT SPECTRA Peter Gao1,2,3, Mark S. Marley, and Kevin Zahnle NASA Ames Research Center Moffett Field, CA 94035, USA Tyler D. Robinson4,5 Department of Astronomy and Astrophysics University of California Santa Cruz Santa Cruz, CA 95064, USA Nikole K. Lewis Space Telescope Science Institute Baltimore, MD 21218, USA 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 2NASA Postdoctoral Program Fellow [email protected] 4Sagan Fellow 5NASA Astrobiology Institute’s Virtual Planetary Laboratory ABSTRACT Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet’s geometric albedo spectrum and how it may affect the direct imaging results of WFIRST, a planned NASA space telescope. For temperate (250 K < Teq < 700 K) Jupiter–mass planets, photochemical destruction of H2S results in the production of 1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, ∼ will condense to form a haze. Nominal haze masses are found to drastically alter a planet’s geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 µm due to molecular absorption, the addition of a sulfur haze boosts the albedo there to 0.7 due to scattering. ∼ Strong absorption by the haze shortward of 0.4 µm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere.
    [Show full text]
  • X-Ray Study of Stellar Winds with Suzaku
    X-ray Study of Stellar Winds with Suzaku Yoshiaki Hyodo Department of Physics, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan [email protected] This thesis was submitted to the Department of Physics, Graduate School of Science, Kyoto University on January 5 2009 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in physics. Abstract Stellar winds from massive stars play an important role for dynamical and chemical evolution of galaxies. To evaluate their effects in a galaxy scale, both the total number and the properties of massive stars should be understood. Most massive stars have soft X-ray emission, while some have additional hard emission. Although it is indicated that the binarity is important, the condition for hard X-ray production has not yet been elucidated. Also, some massive star clusters exhibit diffuse (pc scale) X-ray emission, where stellar winds may be depositing energy to the interstellar space. However, previous studies were not able to clarify the origin of the diffuse emission. It is even unclear whether the emission is physically related to the star cluster or not. The X-ray Imaging Spectrometer (XIS) on board Suzaku has a good energy resolution, a low and stable background, and a large effective area, which are suited for narrow-band surveys and spectroscopy of both point-like and extended X-ray emission. Using the XIS, we performed a very deep survey in the direction of the central region of our Galaxy and pointing observations of three well-known star forming regions in our Galaxy (M 17, the Carina Nebula, and the Arches cluster).
    [Show full text]
  • A Blast Wave from the 1843 Eruption of Eta Carinae
    1 A Blast Wave from the 1843 Eruption of Eta Carinae Nathan Smith* *Astronomy Department, University of California, 601 Campbell Hall, Berkeley, CA 94720-3411 Very massive stars shed much of their mass in violent precursor eruptions [1] as luminous blue variables (LBVs) [2] before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The 19th century eruption of Eta Carinae, the prototype of these events [3], ejected about 12 solar masses at speeds of 650 km/s, with a kinetic energy of almost 1050ergs[4]. Some faster material with speeds up to 1000-2000 km/s had previously been reported [5,6,7,8] but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3500-6000 km/s, reaching farther from the star than the fastest material in earlier reports [5]. This fast material roughly doubles the kinetic energy of the 19th century event, and suggests that it released a blast wave now propagating ahead of the massive ejecta. Thus, Eta Carinae’s outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star’s luminosity [2,3,9,10], but fast material reported here suggests that it was powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability[11]. This may alter interpretations of similar events seen in other galaxies. Eta Carinae [3] is the most luminous and the best studied among LBVs [1,2].
    [Show full text]
  • The Impact of Giant Stellar Outflows on Molecular Clouds
    The Impact of Giant Stellar Outflows on Molecular Clouds A thesis presented by H´ector G. Arce Nazario to The Department of Astronomy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Astronomy Harvard University Cambridge, Massachusetts October, 2001 c 2001, by H´ector G. Arce Nazario All Rights Reserved ABSTRACT Thesis Advisor: Alyssa A. Goodman Thesis by: H´ector G. Arce Nazario We use new millimeter wavelength observations to reveal the important effects that giant (parsec-scale) outflows from young stars have on their surroundings. We find that giant outflows have the potential to disrupt their host cloud, and/or drive turbulence there. In addition, our study confirms that episodicity and a time-varying ejection axis are common characteristics of giant outflows. We carried out our study by mapping, in great detail, the surrounding molecular gas and parent cloud of two giant Herbig-Haro (HH) flows; HH 300 and HH 315. Our study shows that these giant HH flows have been able to entrain large amounts of molecular gas, as the molecular outflows they have produced have masses of 4 to 7 M |which is approximately 5 to 10% of the total quiescent gas mass in their parent clouds. These outflows have injected substantial amounts of −1 momentum and kinetic energy on their parent cloud, in the order of 10 M km s and 1044 erg, respectively. We find that both molecular outflows have energies comparable to their parent clouds' turbulent and gravitationally binding energies. In addition, these outflows have been able to redistribute large amounts of their surrounding medium-density (n ∼ 103 cm−3) gas, thereby sculpting their parent cloud and affecting its density and velocity distribution at distances as large as 1 to 1.5 pc from the outflow source.
    [Show full text]