(12) United States Patent (10) Patent No.: US 8,603,824 B2 Ramseier Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,603,824 B2 Ramseier Et Al USOO8603824B2 (12) United States Patent (10) Patent No.: US 8,603,824 B2 Ramseier et al. (45) Date of Patent: Dec. 10, 2013 (54) PROCESS FOR IMPROVED PROTEIN 5,399,684 A 3, 1995 Davie et al. EXPRESSION BY STRAIN ENGINEERING 5,418, 155 A 5/1995 Cormier et al. 5,441,934 A 8/1995 Krapcho et al. (75) Inventors: Thomas M. Ramseier, Poway, CA 5,508,192 A * 4/1996 Georgiou et al. .......... 435/252.3 (US); Hongfan Jin, San Diego, CA 5,527,883 A 6/1996 Thompson et al. (US); Charles H. Squires, Poway, CA 5,558,862 A 9, 1996 Corbinet al. 5,559,015 A 9/1996 Capage et al. (US) 5,571,694 A 11/1996 Makoff et al. (73) Assignee: Pfenex, Inc., San Diego, CA (US) 5,595,898 A 1/1997 Robinson et al. 5,610,044 A 3, 1997 Lam et al. (*) Notice: Subject to any disclaimer, the term of this 5,621,074 A 4/1997 Bjorn et al. patent is extended or adjusted under 35 5,622,846 A 4/1997 Kiener et al. 5,641,671 A 6/1997 Bos et al. U.S.C. 154(b) by 471 days. 5,641,870 A 6/1997 Rinderknecht et al. 5,643,774 A 7/1997 Ligon et al. (21) Appl. No.: 11/189,375 5,662,898 A 9/1997 Ligon et al. (22) Filed: Jul. 26, 2005 5,677,127 A 10/1997 Hogan et al. 5,683,888 A 1 1/1997 Campbell (65) Prior Publication Data 5,686,282 A 11/1997 Lam et al. US 2006/O110747 A1 May 25, 2006 5,686.283 A 1 1/1997 Gaffney et al. 5,698,425 A 12/1997 Ligon et al. Related U.S. Application Data 5,698,435 A 12/1997 Robinson et al. 5,710,031 A 1/1998 Gaffney et al. (60) Provisional application No. 60/591489, filed on Jul. 26, 2004. (Continued) FOREIGN PATENT DOCUMENTS (51) Int. Cl. CI2N 15/67 (2006.01) EP O121352 10, 1984 CI2N 15/63 (2006.01) EP O1551.89 9, 1985 CI2N 5/64 (2006.01) (Continued) CI2N 5/65 (2006.01) OTHER PUBLICATIONS CI2N 15/52 (2006.01) (52) U.S. Cl. Fathallah-Shaykh HM. Microarrays: applications and pitfalls. Arch USPC ............... 435/471; 435/69.1:435/6: 435/7.1; Neurol. Nov. 2005:62(11):1669-72.* Han etal, Engineering Escherichia coli for Increased Productivity of 435/287.2 Serine-Rich Proteins Based on Proteome Profiling, Applied and (58) Field of Classification Search Environmental Microbiology, Oct. 2003, vol. 69, No. 10, p. 5772 None 5781.* See application file for complete search history. Asai K., et al., “DNA microarray of Bacillus subtilis sigma factors of extraplasmic function family.” 2003, FEMS Microbiol. Lett 220(1), (56) References Cited pp. 155-160. Baneyx. F. “Recombinant Protein Expression in E. coli,' 1999, Curr. U.S. PATENT DOCUMENTS Opin. Biotech 10, pp. 411-421. Baneyx. F. Georgiou G., “Construction and characterization of 3,844,893 A 10, 1974 Hitzman Escherichia coli strains deficient in multiple secreted protease: 3,878,093 A 4, 1975 Kanani et al. protease III degrades high-molecular-weight Substrates in vivo.” 4,169,010 A 9, 1979 Marwill 1991, J Bacteriol 173, pp. 2696-2703. 4,551,433 A 11, 1985 DeBoer Choi et al., “Enhanced Produciton of Insulin-Like Growth Factor I 4,595,658 A 6, 1986 Zinder et al. Fusion Protein in Escherichia coli by Coexpression of the Down 4,637,980 A 1, 1987 Auerbach et al. Regulated Genes Identified by Transcriptome Profiling.” 2003, App. 4,680,264 A 7, 1987 Puhler et al. Envir. Microbio 69, pp. 4737-4742. 4,695.455 A 9, 1987 Bames et al. Eymann C.. et al., “Bacillis subtilis functional genomics: global 4,755.465 A 7/1988 Gray et al. characterization of the stringent response by proteome and 4,861,595 A 8, 1989 Bames et al. transcriptome analysis.” 2002, J Bacteroil 184(9), pp. 2500-2520. 4,888,274 A 12/1989 Radding et al. 4,963,495 A 10/1990 Chang et al. (Continued) 5,023,171 A 6, 1991 Ho et al. 5,043,430 A 8, 1991 Yoshikawa Primary Examiner — Maria Marvich 5,055,294 A 10/1991 Gilroy (74) Attorney, Agent, or Firm — Wilson, Sonsini, 5,082,783 A 1/1992 Ernst et al. Goodrich & Rosati 5,084,559 A 1/1992 Profy 5,085,862 A 2f1992 Klein et al. (57) ABSTRACT 5,128,130 A 7/1992 Gilroy et al. This invention is a process for improving the production 5,151,350 A 9, 1992 Colbert et al. levels of recombinant proteins or peptides or improving the 5,165,927 A 11/1992 Kaslow level of active recombinant proteins or peptides expressed in 5,169,760 A 12, 1992 Wilcox host cells. The invention is a process of comparing two 5,169,772 A 12, 1992 Zimmerman et al. genetic profiles of a cell that expresses a recombinant protein 5,173,616 A 12/1992 Hinooka and modifying the cell to change the expression of a gene 5,232,840 A 8, 1993 Olins product that is upregulated in response to the recombinant 5,264,365 A 11/1993 Georgiou et al. protein expression. The process can improve protein produc 5,281,532 A 1/1994 Rammler et al. 5,292,507 A 3/1994 Charley tion or can improve protein quality, for example, by increas 5,292,658 A 3, 1994 Cormier et al. ing solubility of a recombinant protein. 5,348,867 A 9/1994 Georgiou et al. 35 Claims, 15 Drawing Sheets US 8,603,824 B2 Page 2 (56) References Cited 6,180.343 B1 1/2001 Anderson et al. 6,184,440 B1 2/2001 Shoseyov et al. U.S. PATENT DOCUMENTS 6,194,194 B1 2/2001 Molloy 6, 197928 B1 3/2001 Tsien et al. 5,728,574 A 3/1998 Legg 6,203,986 B1 3/2001 Singer et al. 5,731,280 A 3, 1998 Nielsen et al. 6,204,023 B1 3/2001 Robinson et al. 5,736,379 A 4, 1998 Davie et al. 6,210,910 B1 4/2001 Walt et al. 5,741,663 A 4, 1998 Russell 6,210,922 B1 4/2001 Cote et al. 5,741,668 A 4, 1998 Ward et al. 6,214,567 B1 4/2001 Allen-Hoffmann et al. 5,756,087 A 5/1998 Ligon et al. 6,228,639 B1 5/2001 Gaitanaris 5,757,051 A 5, 1998 Wu et al. 6,246.543 B1 6/2001 Baumgartet al. 5,766,926 A 6, 1998 Blanchette et al. 6,248,550 B1 6/2001 Tsien et al. 5,773,600 A 6/1998 Burnette, III 6,248,558 B1 6/2001 Lin et al. 5,776,730 A * 7/1998 Stuart .......................... 435/69.1 6,251,384 B1 6/2001 Tan et al. 5,777,079 A 7, 1998 Tsien et al. 6,251,582 B1 6/2001 Littman et al. 5,795,759 A 8, 1998 Rosazza et al. 6.255,071 B1 7/2001 Beach et al. 5,804,387 A 9, 1998 Cormacket al. 6.258,560 B1 72001 Leung et al. 5,824,472 A 10/1998 Betlach et al. 6,261,776 B1 7/2001 Pirrung et al. .................... 435/6 5,834,250 A 11/1998 Wells et al. 6,268,201 B1 7/2001 Alland et al. 5,840,554. A 1 1/1998 Thompson et al. 6,268,549 B1 7/2001 Sailland et al. 5,869.038 A 2f1999 Leifert et al. 6,270,958 B1 8, 2001 Olivo et al. 5,876,595 A 3/1999 Bryan 6,280,934 B1 8/2001 Madden et al. 5,891,688 A 4/1999 Gaffney et al. 6,284.496 B1 9/2001 Litman et al. 5,914,233 A 6/1999 Mundy et al. 6,284,519 B1 9, 2001 Young et al. 5,914,254 A 6, 1999 Mascarenhas et al. 6.291,175 B1 9/2001. Sevigny et al. 5,919,445 A 7, 1999 Chao 6,291,177 B1 9, 2001 Madden et al. 5.922.576 A 7, 1999. He et al. 6,303.373 B1 10/2001 Bogan et al. 5925.558 A 7, 1999 Tsien et al. 6,316,181 B1 1 1/2001 Fillmore et al. 5,932.435 A 8, 1999 Atkins et al. 6,319,669 B1 11/2001 Tsien et al. 5,942,387 A 8, 1999 Hollinshead 6,329, 172 B1 12/2001 Rhee et al. 5.948,681 A 9, 1999 Scanlin et al. 6,344,316 Bl 2/2002 Lockhart et al. 5.948,889 A 9, 1999 de Boer et al. 6,372,225 B1 4/2002 Matsuda et al. 5,952,208 A 9, 1999 Darzins et al. 6,403,957 B1 6/2002 Fodor et al. 5,952,236 A 9/1999 Thompson et al. 6,410,229 B1 6/2002 Lockhart et al. 5,955,348 A 9/1999 Ligon et al. 6.420, 108 B2 7/2002 Macket al. 5,958,713 A 9/1999 Thastrup et al. 6,447,770 B1 9/2002 Raaijmakers et al. 5,968,738 A 10, 1999 Anderson et al. 6,451,536 B1 9/2002 Fodor et al. 5,968,773. A 10/1999 Heddle et al. 6,495.357 B1 12/2002 Fuglsang et al. 5,968,779 A 10/1999 Campfield et al.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • Structure of Human Aspartyl Aminopeptidase Complexed With
    Chaikuad et al. BMC Structural Biology 2012, 12:14 http://www.biomedcentral.com/1472-6807/12/14 RESEARCH ARTICLE Open Access Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family Apirat Chaikuad1, Ewa S Pilka1, Antonio De Riso2, Frank von Delft1, Kathryn L Kavanagh1, Catherine Vénien-Bryan2, Udo Oppermann1,3 and Wyatt W Yue1* Abstract Backround: Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β- hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Placenta-Derived Exosomes Continuously Increase in Maternal
    Sarker et al. Journal of Translational Medicine 2014, 12:204 http://www.translational-medicine.com/content/12/1/204 RESEARCH Open Access Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy Suchismita Sarker1, Katherin Scholz-Romero1, Alejandra Perez2, Sebastian E Illanes1,2,3, Murray D Mitchell1, Gregory E Rice1,2 and Carlos Salomon1,2* Abstract Background: Human placenta releases specific nanovesicles (i.e. exosomes) into the maternal circulation during pregnancy, however, the presence of placenta-derived exosomes in maternal blood during early pregnancy remains to be established. The aim of this study was to characterise gestational age related changes in the concentration of placenta-derived exosomes during the first trimester of pregnancy (i.e. from 6 to 12 weeks) in plasma from women with normal pregnancies. Methods: A time-series experimental design was used to establish pregnancy-associated changes in maternal plasma exosome concentrations during the first trimester. A series of plasma were collected from normal healthy women (10 patients) at 6, 7, 8, 9, 10, 11 and 12 weeks of gestation (n = 70). We measured the stability of these vesicles by quantifying and observing their protein and miRNA contents after the freeze/thawing processes. Exosomes were isolated by differential and buoyant density centrifugation using a sucrose continuous gradient and characterised by their size distribution and morphology using the nanoparticles tracking analysis (NTA; Nanosight™) and electron microscopy (EM), respectively. The total number of exosomes and placenta-derived exosomes were determined by quantifying the immunoreactive exosomal marker, CD63 and a placenta-specific marker (Placental Alkaline Phosphatase PLAP).
    [Show full text]
  • Changes in the Sclerotinia Sclerotiorum Transcriptome During Infection of Brassica Napus
    Seifbarghi et al. BMC Genomics (2017) 18:266 DOI 10.1186/s12864-017-3642-5 RESEARCHARTICLE Open Access Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus Shirin Seifbarghi1,2, M. Hossein Borhan1, Yangdou Wei2, Cathy Coutu1, Stephen J. Robinson1 and Dwayne D. Hegedus1,3* Abstract Background: Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results: Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions: The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • CUMMINGS-DISSERTATION.Pdf (4.094Mb)
    D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Chemistry D-AMINOACYLASES AND DIPEPTIDASES WITHIN THE AMIDOHYDROLASE SUPERFAMILY: RELATIONSHIP BETWEEN ENZYME STRUCTURE AND SUBSTRATE SPECIFICITY A Dissertation by JENNIFER ANN CUMMINGS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Frank Raushel Committee Members, Paul Lindahl David Barondeau Gregory Reinhart Head of Department, David Russell December 2010 Major Subject: Chemistry iii ABSTRACT D-Aminoacylases and Dipeptidases within the Amidohydrolase Superfamily: Relationship Between Enzyme Structure and Substrate Specificity. (December 2010) Jennifer Ann Cummings, B.S., Southern Oregon University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Frank Raushel Approximately one third of the genes for the completely sequenced bacterial genomes have an unknown, uncertain, or incorrect functional annotation. Approximately 11,000 putative proteins identified from the fully-sequenced microbial genomes are members of the catalytically diverse Amidohydrolase Superfamily. Members of the Amidohydrolase Superfamily separate into 24 Clusters of Orthologous Groups (cogs). Cog3653 includes proteins annotated as N-acyl-D-amino acid deacetylases (DAAs), and proteins within cog2355 are homologues to the human renal dipeptidase. The substrate profiles of three DAAs (Bb3285, Gox1177 and Sco4986) and six microbial dipeptidase (Sco3058, Gox2272, Cc2746, LmoDP, Rsp0802 and Bh2271) were examined with N-acyl-L-, N-acyl-D-, L-Xaa-L-Xaa, L-Xaa-D-Xaa and D-Xaa-L-Xaa substrate libraries.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
    US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961.
    [Show full text]
  • 1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
    1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13.
    [Show full text]
  • Structure, Mechanism, and Substrate Profile for Sco3058: the Closest Bacterial Homologue to Human Renal Dipeptidase†,‡ ^ ) Jennifer A
    Biochemistry 2010, 49, 611–622 611 DOI: 10.1021/bi901935y Structure, Mechanism, and Substrate Profile for Sco3058: The Closest Bacterial Homologue to Human Renal Dipeptidase†,‡ ^ ) Jennifer A. Cummings,§ Tinh T. Nguyen,§ Alexander A. Fedorov, ) Peter Kolb, Chengfu Xu,§ Elena V. Fedorov, Brian K. Shoichet,^ David P. Barondeau,§ Steven C. Almo, ) and Frank M. Raushel*,§ §Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77843, Albert) Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, and ^Department of Pharmaceutical Chemistry, University of California, 1700 4th Street, San Francisco, California 94158-2330 Received November 10, 2009; Revised Manuscript Received December 11, 2009 ABSTRACT: Human renal dipeptidase, an enzyme associated with glutathione metabolism and the hydrolysis of β-lactams, is similar in sequence to a cluster of ∼400 microbial proteins currently annotated as nonspecific dipeptidases within the amidohydrolase superfamily. The closest homologue to the human renal dipeptidase from a fully sequenced microbe is Sco3058 from Streptomyces coelicolor. Dipeptide substrates of Sco3058 were identified by screening a comprehensive series of L-Xaa-L-Xaa, L-Xaa-D-Xaa, and D-Xaa-L-Xaa dipeptide libraries. The substrate specificity profile shows that Sco3058 hydrolyzes a broad range of dipeptides with a marked preference for an L-amino acid at the N-terminus and a D-amino acid at the 5 -1 -1 C-terminus. The best substrate identified was L-Arg-D-Asp (kcat/Km = 7.6 Â 10 M s ). The three- dimensional structure of Sco3058 was determined in the absence and presence of the inhibitors citrate and a phosphinate mimic of L-Ala-D-Asp.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]