PANAMANIAN GOLDEN FROG Anura Family: Bufonidae Genus: Atelopus Species: Zeteki

Total Page:16

File Type:pdf, Size:1020Kb

PANAMANIAN GOLDEN FROG Anura Family: Bufonidae Genus: Atelopus Species: Zeteki PANAMANIAN GOLDEN FROG Anura Family: Bufonidae Genus: Atelopus Species: zeteki Range: Endemic to Panama in Central America Habitat: rain forests and cloud forest streams Niche: insectivorous, diurnal, semi-aquatic Wild diet: invertebrates such as beetles, flies, ants, springtails, caterpillars, wasps and spiders Zoo diet: Life Span: 12 years Sexual dimorphism: females are 25% longer and heavier than males Location in SF Zoo: South American Tropical Rainforest and Aviary APPEARANCE & PHYSICAL ADAPTATIONS: Panamanian Golden Frogs are a light yellowish green to bright gold with some individuals exhibiting black splotches on their back and legs. Panamanian golden frog is brightly colored to warn potential predators that it is very toxic (aposematic). Like other frogs and toads, the golden frog is capable of secreting a poison to help protect themselves from predators and they are toxic to the touch. The Panamanian golden frog has a variety of toxins, including the nerve toxin “zetekitoxin” after their scientific name. The toxins are acquired through the different is kinds of invertebrates and insects that it eats. All animals in the Bufonidae Family have toxic skin secretions for protection, but the Panamanian golden frog's Weight: M 0.1 to 0.4 oz secretions are the most toxic of this group. F 0.14 to 0.5 oz Length: M 1.4 to 1.9 in Males have nuptial pads, a secondary sex characteristic, a F 1.7 to 2.5 in swelling on the forearm and hand that aids with grip. These pads are used primarily in clasping females during amplexus. STATUS & CONSERVATION The Panamanian golden is a rare species of toad to Panama. Although they are classified as critically endangered on the IUCN Red List, it is believed that the species may have been extinct in the wild since 2007. Populations have dropped by 80% over the last ten years, most likely due to chytridiomycosis. COMMUNICATION AND OTHER BEHAVIOR Male Panamanian golden frogs make a whistling sound and are known to make at least two different kinds of calls that are loud enough to carry into the forest from their home near the water's edge. These frogs have no eardrums and also exhibit a form of sign language in order to signal to each other. They appear to “wave” their hands or move their feet to greet each other, attract a mate or to defend their territory. When the frog encounters a predator, it often waves and lifts its foot at the predator to call attention to its stunning and beautiful coloring. This coloring is a warning of its toxicity, which is enough to make a predator no longer consider the frog as a meal. This adaptation is thought to have evolved because of the noise of the fast-moving streams, which formed its natural habitat. The male tends to stay near the streams where breeding occurs, while in the nonbreeding season, the female retreats into the forests. Adult males, which are active on the ground during the day, recede into the trees and perch there at night. This is most likely a defense mechanism. If the predator is approaching at night, the frog cannot rely on a visual strategy for fleeing. They perch on trees because it gives them the advantage of hearing approaching predators or feeling their weight on the tree branch. COURTSHIP AND YOUNG Between November to January female frogs will return from the forest to the streams where the males will have been marking out territory. They pair in amplexus and the female finds a shallow place in a stream. She lays a long strand of eggs, which she attaches to a rock or pebble sheltered from the sun. The tadpoles spend their early days eating algae from the rocks near the hatch site. The tadpoles develop into frogs after about four to eight months. Youngsters are much more secretive than the fully toxic adult, hiding until they can protect themselves with their skin secretions. Sexual Maturity: 2 years Incubation: 9 days Weight at birth: # of eggs: 200 – 620 per clutch Length at birth: 0.2 in at metamorphosis MISCELLANEOUS Despite its common name, the Panamanian golden frog is a true toad. They are also known as golden arrow poison frog, golden frog or zetek’s golden frog. The Panamanian golden frog is Panama’s national animal; August 14 is National golden frog day. These frogs are considered signs of good luck and prosperity. Project Golden Frog is an organization that strives to ensure the survival of this culturally significant species. This international conservation consortium increases public awareness of global threats to amphibians and helps bring this and other amphibian species back to the wild. Sources: created: 4/2015 http://theanimalfacts.com/reptiles/panamanian-golden-frog/ http://animals.sandiegozoo.org/animals/panamanian-golden-frog http://amphibiaweb.org/cgi/amphib_query?where-genus=Atelopus&where-species=zeteki .
Recommended publications
  • Threat Abatement Plan
    gus resulting in ch fun ytridio trid myc chy osis ith w s n ia ib h p m a f o n o i t THREAT ABATEMENTc PLAN e f n I THREAT ABATEMENT PLAN INFECTION OF AMPHIBIANS WITH CHYTRID FUNGUS RESULTING IN CHYTRIDIOMYCOSIS Department of the Environment and Heritage © Commonwealth of Australia 2006 ISBN 0 642 55029 8 Published 2006 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to: Assistant Secretary Natural Resource Management Policy Branch Department of the Environment and Heritage PO Box 787 CANBERRA ACT 2601 This publication is available on the Internet at: www.deh.gov.au/biodiversity/threatened/publications/tap/chytrid/ For additional hard copies, please contact the Department of the Environment and Heritage, Community Information Unit on 1800 803 772. Front cover photo: Litoria genimaculata (Green-eyed tree frog) Sequential page photo: Taudactylus eungellensis (Eungella day frog) Banner photo on chapter pages: Close up of the skin of Litoria genimaculata (Green-eyed tree frog) ii Foreword ‘Infection of amphibians with chytrid fungus resulting Under the EPBC Act the Australian Government in chytridiomycosis’ was listed in July 2002 as a key implements the plan in Commonwealth areas and seeks threatening process under the Environment Protection the cooperation of the states and territories where the and Biodiversity Conservation Act 1999 (EPBC Act). disease impacts within their jurisdictions.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the Eastern Slopes of the Western Ghats, India
    Alytes, 2017, 34 (1¢4): 1¢19. A new species of the genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern slopes of the Western Ghats, India S. Jegath Janani1,2, Karthikeyan Vasudevan1, Elizabeth Prendini3, Sushil Kumar Dutta4, Ramesh K. Aggarwal1* 1Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Tarnaka, Hyderabad, 500007, India. <[email protected]>, <[email protected]>. 2Current Address: 222A, 5th street, Annamalayar Colony, Sivakasi, 626123, India.<[email protected]>. 3Division of Vertebrate Zoology, Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024-5192, USA. <[email protected]>. 4Nature Environment and Wildlife Society (NEWS), Nature House, Gaudasahi, Angul, Odisha. <[email protected]>. * Corresponding Author. We describe a new species of the endemic frog genus Nasikabatrachus,from the eastern slopes of the Western Ghats, in India. The new species is morphologically, acoustically and genetically distinct from N. sahyadrensis. Computed tomography scans of both species revealed diagnostic osteological differences, particularly in the vertebral column. Male advertisement call analysis also showed the two species to be distinct. A phenological difference in breeding season exists between the new species (which breeds during the northeast monsoon season; October to December), and its sister species (which breeds during the southwest monsoon; May to August). The new species shows 6 % genetic divergence (K2P) at mitochondrial 16S rRNA (1330 bp) partial gene from its congener, indicating clear differentiation within Nasikabatra- chus. Speciation within this fossorial lineage is hypothesized to have been caused by phenological shift in breeding during different monsoon seasons—the northeast monsoon in the new species versus southwest monsoon in N.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Chytridiomycosis Causes Amphibian Mortality Associated with Population Declines in the Rain Forests of Australia and Central America
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9031–9036, July 1998 Population Biology Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America LEE BERGERa,b,c,RICK SPEAREa,PETER DASZAKd,D.EARL GREENe,ANDREW A. CUNNINGHAMf,C.LOUISE GOGGINg, RON SLOCOMBEh,MARK A. RAGANi,ALEX D. HYATTb,KEITH R. MCDONALDj,HARRY B. HINESk,KAREN R. LIPSl, GERRY MARANTELLIm, AND HELEN PARKESb aSchool of Public Health and Tropical Medicine, James Cook University, Townsville, Queensland 4811, Australia; bAustralian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organization, Ryrie Street, Geelong, Victoria 3220, Australia; dSchool of Life Sciences, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, United Kingdom; eMaryland Animal Health Laboratory, College Park, MD 20740; fInstitute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom; gCommonwealth Scientific and Industrial Research Organization, Marine Research, Hobart, Tasmania 7001, Australia; hVeterinary Clinical Centre, University of Melbourne, Werribee, Victoria 3030, Australia; iCanadian Institute for Advanced Research, Program in Evolutionary Biology, National Research Council of Canada, Halifax, NS Canada B3H 3Z1; jConservation Strategy Branch, Queensland Department of Environment, Atherton, Queensland 4883, Australia; kConservation Resource Unit, Queensland Department of Environment, Moggill, Queensland 4070, Australia; lDepartment of Zoology, Southern Illinois University, Carbondale, IL 62901-6501; and mAmphibian Research Centre, 15 Suvla Grove, Nth Coburg, Victoria 3058, Australia Edited by Robert May, University of Oxford, Oxford, United Kingdom, and approved May 18, 1998 (received for review March 9, 1998) ABSTRACT Epidermal changes caused by a chytridiomy- primary degraders or saprobes, using substrates such as chitin, cete fungus (Chytridiomycota; Chytridiales) were found in plant detritus, and keratin.
    [Show full text]
  • Chytridiomycosis (Infection with Batrachochytrium Dendrobatidis) Version 1, 2012
    Disease Strategy Chytridiomycosis (Infection with Batrachochytrium dendrobatidis) Version 1, 2012 © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Populations and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Sustainability, Environment, Water, Population and Communities. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. 1 Preface This disease strategy is for the control and eradication of Chytridiomycosis/Batrachochytrium dendrobatidis. It is one action among 68 actions in a national plan to help abate the key threatening process of chytridiomycosis (Australian Government 2006). The action is number 1.1.3: “Prepare a model action plan (written along the lines of AusVetPlan — http://www.aahc.com.au/ausvetplan/) for chytridiomycosis — free populations based on a risk management approach, setting out the steps of a coordinated response if infection with chytridiomycosis is detected. The model action plan will be based on a risk management approach using quantitative risk analysis where possible and will be able to be modified to become area-specific or population- specific.
    [Show full text]
  • Asymptomatic Infection of the Fungal Pathogen Batrachochytrium
    www.nature.com/scientificreports OPEN Asymptomatic infection of the fungal pathogen Batrachochytrium salamandrivorans in captivity Received: 5 July 2017 Joana Sabino-Pinto 1, Michael Veith2, Miguel Vences 1 & Sebastian Steinfartz1 Accepted: 14 July 2018 One of the most important factors driving amphibian declines worldwide is the infectious disease, Published: xx xx xxxx chytridiomycosis. Two fungi have been associated with this disease, Batrachochytrium dendrobatidis and B. salamandrivorans (Bsal). The latter has recently driven Salamandra salamandra populations to extirpation in parts of the Netherlands, and Belgium, and potentially also in Germany. Bsal has been detected in the pet trade, which has been hypothesized to be the pathway by which it reached Europe, and which may continuously contribute to its spread. In the present study, 918 amphibians belonging to 20 captive collections in Germany and Sweden were sampled to explore the extent of Bsal presence in captivity. The fungus was detected by quantitative Polymerase Chain Reaction (qPCR) in ten collections, nine of which lacked clinical symptoms. 23 positives were confrmed by independent processing of duplicate swabs, which were analysed in a separate laboratory, and/or by sequencing ITS and 28 S gene segments. These asymptomatic positives highlight the possibility of Bsal being widespread in captive collections, and is of high conservation concern. This fnding may increase the likelihood of the pathogen being introduced from captivity into the wild, and calls for according biosecurity measures. The detection of Bsal-positive alive specimens of the hyper-susceptible fre salamander could indicate the existence of a less aggressive Bsal variant or the importance of environmental conditions for infection progression.
    [Show full text]
  • Amphibian Conservation INTRODUCTION
    2014 | HIGHLIGHTS AND ACCOMPLISHMENTS amphibian conservation INTRODUCTION Zoos and aquariums accredited by the Association of Zoos and Aquariums (AZA) have made long-term commitments, both individually and as a community organized under the Amphibian Taxon Advisory Group (ATAG), to the conservation of amphibians throughout the Americas and around the world. With the support and hard work of directors, curators, keepers and partners, 85 AZA-accredited zoos and aquariums reported spending more than $4.2 million to maintain, adapt and expand amphibian conservation programs in 2014. The stories in this report are drawn primarily from annual submissions to AZA’s field conservation database (available when logged into AZA’s website under “Conservation”), as well as from articles submitted directly to AZA. They share the successes and advances in the areas of reintroduction and research, conservation breeding and husbandry and citizen science and community engagement. These efforts are the result of extensive collaborations and multi-year (even multi-decadal!) commitments. AZA congratulates each of the members included in this report for their dedication, and encourages other facilities to become involved. The ATAG has many resources to help people get started or to expand their engagement in amphibian conservation, and people are also welcome to contact the facilities included in this report or the ATAG Chair, Diane Barber ([email protected]). Cover: Spring peeper (Pseudacris crucifer). Widespread throughout the eastern United States and with a familiar call to many, the spring peeper was the most frequently reported frog by FrogWatch USA volunteers in 2014. Although reports of spring peepers began in February, they peaked in April.
    [Show full text]
  • Two New Harlequin Frogs (Anura: Atelopus) from the Andes of Northern Peru Pablo J
    Southern Illinois University Carbondale OpenSIUC Publications Department of Zoology 2008 Two New Harlequin Frogs (Anura: Atelopus) from the Andes of Northern Peru Pablo J. Venegas Alessandro Catenazzi Southern Illinois University Carbondale, [email protected] Karen Siu Ting Jorge Carrillo Follow this and additional works at: http://opensiuc.lib.siu.edu/zool_pubs Published in Salamandra , Issue 44 (2008) at http://www.salamandra-journal.com/ index.php?option=com_docman&Itemid=66 Recommended Citation Venegas, Pablo J., Catenazzi, Alessandro, Siu Ting, Karen and Carrillo, Jorge. "Two New Harlequin Frogs (Anura: Atelopus) from the Andes of Northern Peru." (Jan 2008). This Article is brought to you for free and open access by the Department of Zoology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Two new harlequin frogs from Peru SALAMANDRA 44 3 163-176 Rheinbach, 20 August 2008 ISSN 0036-3375 Two new harlequin frogs (Anura: Atelopus) from the Andes of northern Peru Pablo J. Venegas, Alessandro Catenazzi, Karen Siu-Ting & Jorge Carrillo Abstract. Two new species of Atelopus (harlequin frogs) are described from the Andes of northern Peru, one from the northern Cordillera de Huancabamba (Departamento de Piura), 2,950 m elevation, and the other from an inter-Andean valley of the upper Marañon basin, Cordillera Central (Departamento de La Libertad), 2,620 m elevation. We also suggest the possible link between infection by the chytrid fungus and mortality of harlequin frogs in the upper Marañon basin in 999. Key words. Bufonidae, Atelopus patazensis sp.
    [Show full text]
  • Male Bufo Bufo (Anura: Bufonidae) Passionately Embracing a Bulge of Mud
    Correspondence ISSN 2336-9744 The journal is available on line at www.ecol-mne.com Strange affection: male Bufo bufo (Anura: Bufonidae) passionately embracing a bulge of mud SONJA ĐOR ĐEVI Ć1,2,* and ALEKSANDAR SIMOVI Ć2 1University of Belgrade, Faculty of Biology, Institute of Zoology. Studentski trg 16, 11000 Belgrade, Serbia 2Serbian Herpetological Society “Milutin Radovanovi ć”. Bulevar despota Stefana 142, 11000 Belgrade, Serbia. E- mail: [email protected] *Corresponding author. E-mail: [email protected] Received 13 March 2014 │ Accepted 20 March 2014 │ Published online 21 March 2014. On March 11 th 2014, app. between 10 AM and noon, we visited a pond on the Avala Mt. (44°40.879 ′ N, 20°33.098 ′ E, 230 m a.s.l.). Its north–northeastern portion, overgrown with reeds, was crowded with common toads, Bufo bufo (Linnaeus, 1758). Males were vocalizing, chasing females (and males), struggling to clasp them in firm grip; we observed several “mating balls” – three to ten males were vigorously fighting over a single female. On the margin of that mating frenzy, at the edge of the pond, we observed a silent, lonely male holding on to a bulge of mud (Fig. 1). He was literally motionless in that position for at least half an hour (recorded time). Figure 1. Male common toad firmly grasping a muddy protuberance (Photo: S. Đor đevi ć) Anurans are notorious for making mistakes during mating. Their erroneous amplexuses include conspecific males, dead conspecifics of both sexes, other anuran species, caudates, fish, small tortoises, etc., and even inanimate floating objects (Banta, 1914; Davies & Halliday, 1979; Pearl et al., 2005; Simovi ć et al., 2014; Storm, 1952).
    [Show full text]
  • Histology and Structure of the Testicles in Three Species of Atelopus Frogs (Anura: Bufonidae) Endemic to the Sierra Nevada De Santa Marta, Colombia
    Revista de Biología Tropical, ISSN: 2215-2075, Vol. 69(3): 811-828, July-September 2021 (Published Aug. 09, 2021) 811 Sánchez-Ferreira, A., Rincón-Barón, E. J., & Rueda-Solano, L. A. (2021). Histology and structure of the testicles in three species of Atelopus frogs (Anura: Bufonidae) endemic to the Sierra Nevada de Santa Marta, Colombia. Revista de Biología Tropical, 69(3), 811-828. https://doi. org/10.15517/rbt.v69i3.44727 https://doi.org/10.15517/rbt.v69i3.44727 Histology and structure of the testicles in three species of Atelopus frogs (Anura: Bufonidae) endemic to the Sierra Nevada de Santa Marta, Colombia Arantxa Sánchez-Ferreira1*; https://orcid.org/0000-0001-7571-7952 Edgar Javier Rincón-Barón2; https://orcid.org/0000-0003-1347-171X Luis Alberto Rueda-Solano1,3; https://orcid.org/0000-0001-6968-0719 1. Universidad del Magdalena, Facultad de Ciencias Básicas, Grupo de Investigación en Biodiversidad y Ecología Aplicada, calle 32 No 22-08, Santa Marta, Colombia; [email protected] (Correspondence*) 2. Universidad de Santander, Facultad de Ciencias de la Salud, Grupo de Investigación Agroambiente y Salud- MICROBIOTA, calle 70 No 55-210, Campus Universitario Lagos del Cacique, Bucaramanga, Colombia; [email protected] 3. Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; [email protected] Received 19-XI-2020. Corrected 11-V-2021. Accepted 20-VII-2021. ABSTRACT Introduction: Testicular histology constitutes one of the least explored aspects in frogs of the genus Atelopus. This taxonomic group shows an alarming population decline; therefore, its reproductive biology is one of the greatest topics of interest for its conservation.
    [Show full text]