Vegetation Classification and Mapping Project Report, Natural Bridges National Monument

Total Page:16

File Type:pdf, Size:1020Kb

Vegetation Classification and Mapping Project Report, Natural Bridges National Monument National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification and Mapping Project Report, Natural Bridges National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2008/077 USGS-NPS Vegetation Mapping Program Natural Bridges National Monument ON THE COVER Sipapu Bridge, Natural Bridges National Monument (Photograph courtesy of the National Park Service) ii USGS-NPS Vegetation Mapping Program Natural Bridges National Monument Vegetation Classification and Mapping Project Report, Natural Bridges National Monument Natural Resource Report NPS/NCPN/NRTR—2008/077 Janet Coles Northern Colorado Plateau Network National Park Service Moab, Utah Jim Von Loh engineering-environmental Management, Inc. Englewood, Colorado Angela Evenden Northern Colorado Plateau Network National Park Service Moab, Utah Gerald Manis GIS Contractor Moab, Utah Gery Wakefield / Aneth Wight Southeast Utah Group / Northern Colorado Plateau Network National Park Service Moab, Utah January, 2008 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado iii USGS-NPS Vegetation Mapping Program Natural Bridges National Monument The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientific literature reviews; and peer reviewed proceedings of technical workshops, conferences, or symposia. Views, statements, findings, conclusions, recommendations and data in this report are solely those of the authors and do not necessarily reflect policies of the U.S. Department of the Interior, NPS. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Printed copies of reports in these series may be produced in a limited quantity and they are only available as long as the supply lasts. This report is available from the Northern Colorado Plateau I&M Network website (http://www.nature.nps.gov/im/units/NCPN) or the Natural Resource Publications Management Web site (http://www.nature.nps.gov/publications/NRPM) on the Internet. Please cite this publication as: Coles, J., J. Von Loh, A. Evenden, G. Manis, G. Wakefield. and A. Wight. 2008. Vegetation Classification and Mapping Project Report, Natural Bridges National Monument. Natural Resource Technical Report NPS/NCPN/NRTR—2008/077. National Park Service, Fort Collins, Colorado. NPS D-52, January 2008 iv USGS-NPS Vegetation Mapping Program Natural Bridges National Monument Contents SUMMARY .................................................................................................................................XI ACKNOWLEDGEMENTS ........................................................................................................XIII INTRODUCTION ......................................................................................................................... 1 Vegetation Classification and Mapping Project, Natural Bridges National Monument......... 1 The USGS-NPS Vegetation Characterization Program ....................................................... 1 Northern Colorado Plateau Network Inventory and Monitoring Program............................. 2 Vegetation Characterization Program Standards................................................................. 2 National Vegetation Classification Standard ........................................................................ 3 Other Standards................................................................................................................... 4 PROJECT AREA DESCRIPTION ............................................................................................... 5 Location and Setting ............................................................................................................5 Topography.......................................................................................................................... 6 Climate................................................................................................................................. 6 Geology and Vegetation....................................................................................................... 9 Soils ................................................................................................................................... 14 Biological Soil Crusts .........................................................................................................15 Hydrology and Water Resources ....................................................................................... 16 Land Use............................................................................................................................ 17 Previous Vegetation Studies .............................................................................................. 17 PROJECT OVERVIEW.............................................................................................................. 19 General Approach and Timeline ........................................................................................ 19 Primary Partners and Project Roles................................................................................... 20 Aerial Photography.............................................................................................................22 Stereoscopic Aerial Photo Coverage ..................................................................................... 23 Digital Orthophotos................................................................................................................. 25 Scoping Meeting ................................................................................................................26 Work Plan........................................................................................................................... 26 Project Boundary and Map Extent ..................................................................................... 27 Minimum Mapping Unit ...................................................................................................... 27 Ecological System Classification........................................................................................ 27 VEGETATION CLASSIFICATION AND DESCRIPTION .......................................................... 30 Pre-Field Methods..............................................................................................................30 Preliminary Classification List.................................................................................................30 v USGS-NPS Vegetation Mapping Program Natural Bridges National Monument Legacy Data Review............................................................................................................... 30 Field Methods..................................................................................................................... 30 Field Sampling Approach ....................................................................................................... 30 Plot Data Collection ................................................................................................................ 31 Data Processing and Analysis................................................................................................ 34 Observation Points ................................................................................................................. 34 Classification Data Analysis ............................................................................................... 35 Classification Results.........................................................................................................36 Plant Community Descriptions........................................................................................... 40 Forest Associations ................................................................................................................ 40 Woodland Associations .......................................................................................................... 40 Shrubland Associations ..........................................................................................................42 Herbaceous Associations....................................................................................................... 42 Field Key Preparation........................................................................................................
Recommended publications
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae)
    Systematic Botany (2018), 43(1): pp. 53–76 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X696978 Date of publication April 18, 2018 Evaluating the Monophyly and Biogeography of Cryptantha (Boraginaceae) Makenzie E. Mabry1,2 and Michael G. Simpson1 1Department of Biology, San Diego State University, San Diego, California 92182, U. S. A. 2Current address: Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, U. S. A. Authors for correspondence ([email protected]; [email protected]) Abstract—Cryptantha, an herbaceous plant genus of the Boraginaceae, subtribe Amsinckiinae, has an American amphitropical disjunct distri- bution, found in western North America and western South America, but not in the intervening tropics. In a previous study, Cryptantha was found to be polyphyletic and was split into five genera, including a weakly supported, potentially non-monophyletic Cryptantha s. s. In this and subsequent studies of the Amsinckiinae, interrelationships within Cryptantha were generally not strongly supported and sample size was generally low. Here we analyze a greatly increased sampling of Cryptantha taxa using high-throughput, genome skimming data, in which we obtained the complete ribosomal cistron, the nearly complete chloroplast genome, and twenty-three mitochondrial genes. Our analyses have allowed for inference of clades within this complex with strong support. The occurrence of a non-monophyletic Cryptantha is confirmed, with three major clades obtained, termed here the Johnstonella/Albidae clade, the Maritimae clade, and a large Cryptantha core clade, each strongly supported as monophyletic. From these phylogenomic analyses, we assess the classification, character evolution, and phylogeographic history that elucidates the current amphitropical distribution of the group.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • COSEWIC Assessment and Status Report on the Tiny Cryptantha Cryptantha Minima in Canada
    COSEWIC Assessment and Status Report on the Tiny Cryptantha Cryptantha minima in Canada THREATENED 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Tiny Cryptantha Cryptantha minima in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 37 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the tiny cryptanthe Cryptantha minima in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 18 pp. Smith, B. 1998. COSEWIC status report on the tiny cryptanthe Cryptantha minima in Canada, in COSEWIC assessment and status report on the tiny cryptanthe Cryptantha minima in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-18 pp. Production note: COSEWIC would like to acknowledge Sue Michalsky for writing the status report on the Tiny Cryptantha Cryptantha minima in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Bruce Bennett and Erich Haber, Co-chairs of the COSEWIC Vascular Plants Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Cryptanthe minuscule (Cryptantha minima) au Canada. Cover illustration/photo: Tiny Cryptantha — Source: Environment Canada 2010.
    [Show full text]
  • Sagebrush Identification Guide
    Sagebrush Identification Table For Use With Black Light For Use in the Inter-Great Basin Area Fluoresces Under Ultraviolet Branching Mature Plant Plant Nomenclature Light Leaf shape and size Plant Growth Form Environment Comments Pattern Height Water Alcohol Leaves 3/4 ‐1 1/4 in. Uneven topped; Main stem is undivided and trunk‐like at base;. Located long; long narrow; Leaf Uneven normally in drainage bottoms; Small concave areas and valley floors, but will normally be 4 times Colorless to Very topped; always on deep Non‐saline Non‐calcareous soils. Vegetative leader is greater Brownish to longer than it is at its "V"ed Mesic to Frigid 3.5 ft. to Very Pale blue Floral stems than 1/2 the length of the flower stalk from the same single branch. In Basin Basin Big Sagebrush Artemisia Reddish‐Brown widest point; Leaf branching/ Xeric to Ustic greater than 8 tridentata subsp. tridentata (ARTRT) Rarely pale growing there are two growth forms: One the Typical tall form (Diploid); Two a shorter to colorless margins not extending upright 4000 to 8000 ft. ft. Brownish‐red throughout form that looks similar to Wyoming sagebrush if you do not look for the trunk outward; Crushed leaves the crown (around 1 inch or so); the branching pattern; and the seedhead to vegetative have a strong turpentine leader characteristics (Tetraploid). smell Uneven Leaves 1/2 ‐ 3/4 inches topped; Uneven topped; Main stem is usually divided at ground level. Plants will often Mesic to Frigid Wyoming Big Sagebrush Colorless to Very Colorless to pale long; Leaf margins curved Floral stems Spreading/ keep the last years seed stalks into the following fall.
    [Show full text]
  • 39516 Federal Register / Vol. 50, No. 188 / Friday, September 27, 1985
    39516 Federal Register / Vol. 50, No. 188 / Friday, September 27, 1985 / Rules and Regulations reaction irreversibility or by formation polarography or square-wave (3) Irving, H., “The Stability of Metal of two or more complex species in polarography). Complexes and Their Measurement equilibrium with each other. In this last (3) Interpretation and evaluation of Polarographically," Advances ih case it is necessary to apply the method resu lts, (i) Stability constants Polarography Proceedings of the 2nd by De Ford and Hume paragraph (d) (8) determined for a new substance can be International Congress, Ed. I.S. of this section to calculate stepwise compared with literature values for Langmuir (Pergamon Press, 1960). formation constants. standard substances (see Reference (4) Perrin, D.D., Dempsey, B., B u ffe r (2) Test report, (i) The test report substances, above) and used therefore for pH and Metal Ion Controls. should list for each metal ion to evaluate the strength of its (Chapman and Hall: London, 1974). investigated the half-wave potential complexing ability. (5) “Stability Constants of Metal-ion Complexes,” Part B, Organic Ligands, Ei /2 , co-ordination number and overall (ii) The system is physically stability constant. Compiled by D.D. Perrin, IUPAC meaningful if (A) the value of the Publication on Chemical Data Series, stability constant is positive and (B) the (ii) In addition, the following should No. 22 (Pergamon Press, 1979) also be reported: standard error is less than the constant (6) Grabaric, B., Tkalcec, M., Piljac, L, (A) Type of polarisable micro­ (the t-test should be used as a criterion).
    [Show full text]
  • Vanessa Rodrigues Guedes
    UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA Vanessa Rodrigues Guedes ESTUDO FITOQUÍMICO DO EXTRATO HEXÂNICO E DOS ÓLEOS VOLÁTEIS DE Acritopappus micropappus Salvador 2004 ii VANESSA RODRIGUES GUEDES ESTUDO FITOQUÍMICO DO EXTRATO HEXÂNICO E DOS ÓLEOS VOLÁTEIS DE Acritopappus micropappus Dissertação apresentada ao Programa de Pós-graduação em Química do Instituto de Química da Universidade Federal da Bahia como requisito parcial para obtenção do grau de Mestre em Química na área de concentração em Química Orgânica. Orientador: Prof. Dr. Dirceu Martins Salvador 2004 iii Dedico este trabalho àqueles que sempre acreditaram em mim: meus pais, meus queridos irmãos e em especial ao meu marido Alziro. iv AGRADECIMENTOS A Deus por estar sempre ao meu lado me guiando. Ao Prof. Dr. Dirceu Martins pela preciosa orientação, dedicação e por ter acreditado no meu potencial. Aos professores Frederico Guaré, Jorge David, Leila Aguiar e Nídia Roque pelos conhecimentos transmitidos. Aos professores do Departamento de Química Orgânica por todo conhecimento adquirido durante minha formação, em especial a professora Anair pela disponibilidade e obtenção de alguns espectros de massa. À professora Hortensia Pousada Bautista pela identificação botânica e ajuda indispensável. A todos os funcionários do Instituto de Química que colaboraram na realização desse trabalho. A Cristovão e a Paulo pelo apoio técnico. Aos meus colegas de laboratório: Meire, Jaquelina, Suzimone, Luciana, Carla, Marcus, Larissa, Manuela, Débora, Rosane, Vânia, Pedro, e André, pelo companherismo e pelos momentos agradáveis que passamos juntos. A Martins, Flávia, Rita e Sandra pela troca de conhecimentos e pela amizade que construímos. A Josanaide pela disponibilidade e apoio constantes.
    [Show full text]
  • Sagebrush Ecology of Parker Mountain, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Sagebrush Ecology of Parker Mountain, Utah Nathan E. Dulfon Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Earth Sciences Commons Recommended Citation Dulfon, Nathan E., "Sagebrush Ecology of Parker Mountain, Utah" (2016). All Graduate Theses and Dissertations. 5056. https://digitalcommons.usu.edu/etd/5056 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SAGEBRUSH ECOLOGY OF PARKER MOUNTAIN, UTAH by Nathan E. Dulfon A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Range Science Approved: _________________ _________________ Eric T. Thacker Terry A. Messmer Major Professor Committee Member __________________ ___________________ Thomas A. Monaco Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Nathan E. Dulfon 2016 All Rights Reserved iii ABSTRACT Sagebrush Ecology of Parker Mountain, Utah by Nathan E. Dulfon, Master of Science Utah State University, 2016 Major Professor: Dr. Eric T. Thacker Department: Wildland Resources Parker Mountain, is located in south central Utah, it consists of 153 780 ha of high elevation rangelands dominated by black sagebrush (Artemisia nova A. Nelson), and mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rybd.] Beetle) communities. Sagebrush obligate species including greater sage-grouse (Centrocercus urophasianus) depend on these vegetation communities throughout the year.
    [Show full text]
  • Canyons of the Ancients National Monument Plant List by Genus
    Canyons of the Ancients National Monument Plant List Please send all corrections and updates to Al Schneider, [email protected] Updated 6/2011 Scientific Name Common name Family Abronia fragrans Sand-verbena Nyctaginaceae Achillea lanulosa Western yarrow Asteraceae Achnatherum hymenoides Indian ricegrass Poaceae Achnatherum speciosum Showy needle grass Poaceae Acosta diffusa Tumble knapweed Asteraceae Acosta maculosa Spotted knapweed Asteraceae Acrolasia albicaulis Whitestem blazingstar Loasaceae Acroptilon repens Russian knapweed Asteraceae Adenolinum lewisii Blue Flax Linaceae Adiantum capillus-veneris Venus' hair fern Adiantaceae Agropyron cristatum Crested wheatgrass Poaceae Agrostis scabra Rough bentgrass Poaceae Agrostis stolonifera Redtop bentgrass Poaceae Allium acuminatum Tapertip onion Alliaceae Allium macropetalum Largeflower wild onion Alliaceae Allium textile Textile onion Alliaceae Alyssum minus Yellow alyssum Brassicaceae Amaranthus blitoides Prostrate pigweed Amaranthaceae Amaranthus retroflexus Redroot amaranth Amaranthaceae Ambrosia acanthicarpa Flatspine burr ragweed Asteraceae Ambrosia trifida great ragweed Asteraceae Amelanchier alnifolia? Saskatoon serviceberry Rosaceae Amelanchier utahensis Utah serviceberry Rosaceae Amsonia jonesii Jones's bluestar Apocynaceae Androsace occidentalis Western rockjasmine Primulaceae Androsace septentrionalis Pygmyflower rockjasmine Primulaceae Androstephium breviflorum Pink funnellily Alliaceae Anisantha tectorum Cheatgrass Poaceae Antennaria rosulata Rosy pussytoes Asteraceae
    [Show full text]
  • Pdf Clickbook Booklet
    Grand Canyon Flora: Upper Bright Angel Trail # Famil ID Scientific Name (*)Common Name #iN Mile #Pl/Loc Lycopods 1 Selag Selaginella mutica spike-moss 1 1.81 1/1 Gymnosperms 2 Cupre Juniperus osteosperma Utah juniper 5 0.00 20/9 3 Ephed Ephedra viridis green ephedra 9 0.34 50/9 4 Pinac Pinus edulis two-needle pinyon pine 9 0.00 50/9 5 Pinac Pinus ponderosa ponderosa pine 3 0.13 / 6 Pinac Pseudotsuga menziesii var. glauca Rocky Mountain Douglas fir 7 0.38 10/3 Eudicots 7 Amara Amaranthus albus *tumble pigweed 0.02 5/2 8 Amara Amaranthus powellii Powell's amaranth 0.00 20/2 9 Amara Atriplex canescens fourwing saltbush 3.73 1/1 10 Amara Atriplex rosea *tumbling oracle 0.02 40/2 11 Amara Chenopodium fremontii Fremont's goosefoot 0.08 20/5 12 Amara Salsola tragus *Russian thistle 1 0.01 20/3 13 Anaca Rhus aromatica skunkbush 2 1.17 20/6 14 Apiac Yabea microcarpa California hedge-parsley 3.46 2/1 15 Apocy Asclepias subverticillata poison milkweed 3.61 1/1 16 Aster Acourtia wrightii brownfoot 3 3.46 2/2 17 Aster Ageratina herbacea fragrant snakeroot 3 0.20 30/5 18 Aster Artemisia bigelovii Bigelow sagebrush 1 1.77 iN/1 19 Aster Artemisia ludoviciana silver wormwood 1 0.05 99/9 20 Aster Artemisia nova black sagebrush 0.23 x/1 21 Aster Artemisia tridentata big sagebrush 0.15 30/9 22 Aster Baccharis salicifolia mule fat 2 IG iN/1 23 Aster Baccharis sarothroides broom baccharis 1 4.60 iN/1 24 Aster Brickellia californica California brickellbush 6 0.04 99/9 25 Aster Brickellia longifolia longleaf brickellbush 2 1.71 99/9 26 Aster Chaetopappa ericoides rose heath 0.44 20/6 27 Aster Cirsium arizonicum Arizona thistle 9 0.05 30/9 28 Aster Dieteria canescens hoary-aster 7 0.00 50/9 29 Aster Encelia resinifera resin brittlebush 3.28 30/7 30 Aster Ericameria arizonica Grand Canyon Goldenweed 1 0.12 20/8 31 Aster Ericameria nauseosa var.
    [Show full text]
  • Distribution and Ecology of Sagebrush Taxa Within Portions of the Colorado Plateau
    Distribution and ecology of sagebrush taxa within portions of the Colorado Plateau Allan R. Stevens, Snow College, Ephraim, UT E. Durant McArthur, Retired USDA, Forest Service, Shrub Science Laboratory, Provo, UT Stephen B. Monsen, Western Ecological Consulting, Mapleton, UT Stewart Sanderson, Retired, USDA, Forest Service, Shrub Science Laboratory, Provo, UT Since sagebrush is such an important plant from ecological and management perspectives it is important to determine the type and even the ploidy (the number of sets of diploid chromosomes in a plant) levels on a landscape scale. Many sagebrush species include plants and populations with multiple sets of chromosomes. Differences in ploidy levels may be adaptive and serve to prevent gene flow between plants and taxa at different ploidy levels. Polyploids can be better adapted to extreme ecological environments than their diploid relatives. Methods • Lands within the Uncompahgre Plateau were surveyed and areas where sagebrush taxa occurred were identified and mapped using a global positioning system. • Sagebrush taxa were identified on site using morphological characteristics. Methods • Samples of the leaf material were crushed in water and viewed under long-wave ultraviolet light and the amount of florescence if present was recorded to confirm morphological identification. • The leaf material was then examined using a flow cytometer (Partec, PA II) to determine ploidy level. • Sagebrush taxa, ploidy levels, and their distribution were mapped using ARCVIEW. Discussion We were able to identify the taxa and ploidy levels of the sagebrush on 1,099,876 acres of the Uncompahgre Plateau. We found that some taxa and plants of different ploidy levels grew sympatrically, while other grew tightly parapatrically.
    [Show full text]
  • Description of Indicator Plants and Methods of Botanical Prospecting for Uranium Deposits on the Colorado Plateau
    Description of Indicator Plants and Methods of Botanical Prospecting for Uranium Deposits on the Colorado Plateau GEOLOGICAL SURVEY BULLETIN 1030-M This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission Description of Indicator Plants and Methods of Botanical Prospecting for Uranium Deposits on the Colorado Plateau By HELEN L. CANNON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1 03 0 - M This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Page Abstract________________________________________________________ 399 Introduction._____________________________________________________ 399 Colorado Plateau soils and ground-water conditions-___________________ 400 Plants in relation to ground water.__________________________________ 401 Plant associations and indicator plants on the Colorado Plateau.________ 402 How to prospect by plant analysis.__________________________________ 405 How to use indicator plants in prospecting.___________________________ 407 Selected bibliography. _____________________________________________ 411 Illustrations and descriptions
    [Show full text]