Agronomy-10-01279-V2.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arbuscular Mycorrhizal Fungi and Soil Aggregation
R.C.Suelo Nutr. Veg. 8 (2) 2008 (9-18) J. Soil Sc. Plant Nutr. 8 (2) 2008 (9-18) 9 ARBUSCULAR MYCORRHIZAL FUNGI AND SOIL AGGREGATION Fernando Borie, Rosa Rubio, Alfredo Morales Universidad de La Frontera. Casilla 54-D-Temuco. Corresponding author: [email protected] Hongos micorrícicos arbusculares y agregación de suelo Keywords: arbuscular mycorrhizal fungi, soil aggregates, glomalin. ABSTRACT Soil aggregation is governed by several biotic and abiotic components including land- use management. Aggregation is essential to maintain soil physical properties and facilitate biogeochemical cycling. Hyphae of arbuscular mycorrhizal fungi (AMF) are considered to be primary soil aggregators and there is a positively correlation between AMF hyphae and aggregate stability in natural systems. Recent evidence suggests that glomalin (GRSP), a glycoprotein produced by AMF hyphae which has a cementing capacity to maintain soil particles together, is mainly involved in such aggregation. However, recently controversial results together with reported shortcoming in glomalin determinat suggest to proceed with caution when studying glomalin in connection with soil aggregation. Relationships between glomalin and soil aggregates found in Chilean soils are discussed. 10 Arbuscular mycorrhizal fungi, Borie et al. Palabras Claves: Hongos micorrícicos, agregados de suelo, glomalina. RESUMEN La agregación de suelo es gobernada por una serie de factores bióticos y abióticos incluyendo el manejo del suelo. La agregación es fundamental para mantener las propiedades físicas del suelo y facilitar los ciclos biogeoquímicos. Las hifas de los hongos formadores de micorrizas arbusculares (MA) son consideradas como importantes agentes aglutinadores de partículas del suelo y se han descrito correlaciones positivas entre hifas de hongos MA y estabilidad de agregados en sistemas naturales. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Chernozems Kastanozems Phaeozems
Chernozems Kastanozems Phaeozems Peter Schad Soil Science Department of Ecology Technische Universität München Steppes dry, open grasslands in the mid-latitudes seasons: - humid spring and early summer - dry late summer - cold winter occurrence: - Eurasia - North America: prairies - South America: pampas Steppe soils Chernozems: mostly in steppes Kastanozems: steppes and other types of dry vegetation Phaeozems: steppes and other types of medium-dry vegetation (till 1998: Greyzems, now merged to the Phaeozems) all steppe soils: mollic horizon Definition of the mollic horizon (1) The requirements for a mollic horizon must be met after the first 20 cm are mixed, as in ploughing 1. a soil structure sufficiently strong that the horizon is not both massive and hard or very hard when dry. Very coarse prisms (prisms larger than 30 cm in diameter) are included in the meaning of massive if there is no secondary structure within the prisms; and Definition of the mollic horizon (2) 2. both broken and crushed samples have a Munsell chroma of less than 3.5 when moist, a value darker than 3.5 when moist and 5.5 when dry (shortened); and 3. an organic carbon content of 0.6% (1% organic matter) or more throughout the thickness of the mixed horizon (shortened); and Definition of the mollic horizon (3) 4. a base saturation (by 1 M NH4OAc) of 50% or more on a weighted average throughout the depth of the horizon; and Definition of the mollic horizon (4) 5. the following thickness: a. 10 cm or more if resting directly on hard rock, a petrocalcic, petroduric or petrogypsic horizon, or overlying a cryic horizon; b. -
Impact of Plant Roots and Soil Organisms on Soil Micromorphology and Hydraulic Properties
CMYK Biologia, Bratislava, 61/Suppl. 19: S339—S343, 2006 S339 Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties Radka Kodešová1,VítKodeš2, Anna Žigová3 &JiříŠimůnek4 1Czech University of Agriculture in Prague, Department of Soil Science and Geology, Kamýcka 129,CZ–16521 Prague, Czech Republic; e-mail: [email protected] 2Czech Hydrometeorological Institute, Department of Water Quality, Na Šabatce 17,CZ–14306 Prague, Czech Republic 3Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269,CZ–16502 Prague, Czech Republic 4University of California Riverside, Department of Environmental Sciences, Riverside, CA 92521,USA Abstract: A soil micromorphological study was performed to demonstrate the impact of soil organisms on soil pore structure. Two examples are shown here. First, the influence of earthworms, enchytraeids and moles on the pore structure of a Greyic Phaeozem is demonstrated by comparing two soil samples taken from the same depth of the soil profile that either were affected or not affected by these organisms. The detected image porosity of the organism-affected soil sample was 5 times larger then the porosity of the not-affected sample. The second example shows macropores created by roots and soil microorganisms in a Haplic Luvisol and subsequently affected by clay coatings. Their presence was reflected in the soil water retention curve, which displayed multiple S-shaped features as obtained from the water balance carried out for the multi-step outflow experiment. The dual permeability models implemented in HYDRUS-1D was applied to obtain parameters characterizing multimodal soil hydraulic properties using the numerical inversion of the multi-step outflow experiment. -
Managing for Its Magic Sauce
Managing for its Magic Sauce Duff & Retained Organic Matter Northern Hardwood Forest Definition NHF NHF Natural Community Maple ‐ Birch ‐ Beech ‐ (Ash & Pine) Matrix Forest Outmoded concepts – Climax forest, succession to maple Spatial Scale –Natural Community Small Patch • Less than 50 acres • Embedded in another natural community for viability • Distinct physical (& chemical) features • 5% of landscape • Much of the biodiversity • Cliffs, acidic bogs, vernal pools Spatial Scale –Natural Community Large Patch • 50 to 1000 acres • Usually on dominant environmental condition or disturbance – shallow water inundation, fire • 20% of the landscape • These are the areas people often associate with special wildlife or plants – marsh & ducks, floodplain forests • Ecological parameters & careful management allows resource extraction Spatial Scale –Matrix Community Matrix Forest • 1,000s to millions of acres –dominates landscape • Shaped by climate and geology –and now humans as its where we live • Disturbance driven –small gap • 75% of the landscape • Species are “generalists” with broad ecological tolerances • Northern Hardwoods, Spruce NH, Spruce‐Fir forests • Temperate climate produces immense amounts of wood What Makes NHF Unique? Retained Organic Matter aka Coarse Woody Debris • 20% birds, 30% mammals, 45% amphibians, 50‐60% of reptiles use CWD directly • Nearly every forest bird is tied to insects that are part of the detrital cycle • 99% of energy in a tree ends up in detrital cycle Retained Organic Matter Other Values • Trapping downslope movement of soil • Storing moisture in forest floor ecosystem –highly diameter related • Legacy feature after disturbance • Insects and fungi –volume & diameter • Seedling bed – yellow birch Size and Distribution matter 60 • ½ volume in managed forests 50 40 •Greatest loss in large 30 Total diameter (1/10 vol) "7.8-19 % 20 •70 year decay rate "19 < % 10 (conservative) and water 0 storage Old 2nd Growth Growth •Bats & Birds Based on McGee et al. -
Redalyc.Rates of Soil-Forming Processes in Three Main Models of Pedogenesis
Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 [email protected] Universidad Nacional Autónoma de México México Alexandrovskiy, Alexander L. Rates of soil-forming processes in three main models of pedogenesis Revista Mexicana de Ciencias Geológicas, vol. 24, núm. 2, 2007, pp. 283-292 Universidad Nacional Autónoma de México Querétaro, México Available in: http://www.redalyc.org/articulo.oa?id=57224213 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Ciencias Geológicas,Rates of soil-forming v. 24, núm. processes2, 2007, p. in 283-292 three main models of pedogenesis 283 Rates of soil-forming processes in three main models of pedogenesis Alexander L. Alexandrovskiy Institute of Geography, Russian Academy of Sciences, Staromonetny 29, Moscow 119017, Russia. [email protected] ABSTRACT Rates of soil-forming processes were evaluated for the three major models of pedogenesis: (1) normal “top-down” soil development (pedogenesis transforms the parent material under a geomorphically stable surface), (2) soil development accompanied by pedoturbation (turbational model), and (3) soil development accompanied by or alternating with sediment deposition on the soil surface (sedimentational model). According to the normal model, the rates of pedogenic processes exponentially decrease with time, so that in 2–3 ka after the beginning of pedogenesis, temporal changes in the soil properties become negligibly small, which is typical of soils in the steady state. Under humid climate conditions, the rates of many processes (accumulation and mineralization of humus, leaching of bases, migration of sesquioxides, textural differentiation, and so forth) are much higher than under arid climate conditions. -
(WRB) to Describe and Classify Chernozemic Soils in Central Europe
244 C. KABA£A, P. CHARZYÑSKI, SZABOLCS CZIGÁNY, TIBOR J. NOVÁK, MARTIN SAKSA,SOIL M.SCIENCE ŒWITONIAK ANNUAL DOI: 10.2478/ssa-2019-0022 Vol. 70 No. 3/2019: 244–257 CEZARY KABA£A1*, PRZEMYS£AW CHARZYÑSKI2, SZABOLCS CZIGÁNY3, TIBOR J. NOVÁK4, MARTIN SAKSA5, MARCIN ŒWITONIAK2 1 Wroc³aw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection ul. Grunwaldzka 53, 50-375 Wroc³aw, Poland 2 Nicolaus Copernicus University, Department of Soil Science and Landscape Management ul. Lwowska 1, 87-100, Toruñ, Poland 3 University of Pécs, Department of Physical and Environmental Geography 6 Ifjúság u., 7624 Pécs, Hungary 4 University of Debrecen, Department for Landscape Protection and Environmental Geography Egyetem tér 1, 4002 Debrecen, Hungary 5 National Agricultural and Food Centre, Soil Science and Conservation Research Institute Gagarinova 10, 82713 Bratislava, Slovakia Suitability of World Reference Base for Soil Resources (WRB) to describe and classify chernozemic soils in Central Europe Abstract: Chernozemic soils are distinguished based on the presence of thick, black or very dark, rich in humus, well-structural and base-saturated topsoil horizon, and the accumulation of secondary carbonates within soil profile. In Central Europe these soils occur in variable forms, respectively to climate gradients, position in the landscape, moisture regime, land use, and erosion/ accumulation intensity. "Typical" chernozems, correlated with Calcic or Haplic Chernozems, are similarly positioned at basic classification level in the national soil classifications in Poland, Slovakia and Hungary, and in WRB. Chernozemic soils at various stages of their transformation are placed in Chernozems, Phaeozems or Kastanozems, supplied with respective qualifiers, e.g. -
Soil Microbial Communities of Japanese Apricot (Prunus Mume) Orchard Under Organic and Conventional Management
Cho et al. Appl Biol Chem (2019) 62:71 https://doi.org/10.1186/s13765-019-0479-4 ARTICLE Open Access Soil microbial communities of Japanese apricot (Prunus mume) orchard under organic and conventional management Hyeon Ji Cho1†, Young Han Lee1†, Si‑Lim Choi1, Dong Cheol Seo2,3*, Sung Ran Min4 and Jae‑Young Heo1* Abstract Organic farming has positive efects on soil microbial population, process, and activity. To examine efects of two diferent management methods (organic farming vs. conventional farming) on the cultivation of Japanese apricot, contents of fatty acid methyl ester (FAME), total glomalin, and soil chemical properties were analyzed and compared. The organic farming practice resulted in signifcantly higher contents of organic matter, total FAME, total bacteria, Gram‑negative bacteria, arbuscular mycorrhizal fungi, and total glomalin than the conventional farming practice. Soil organic matter showed positive correlation with contents of soil microbial biomass, total bacteria, total glomalin, Gram‑positive bacteria, Gram‑negative bacteria, actinomycetes, and arbuscular mycorrhizal fungi. In 2018, the organic farming practice resulted in lower ratios of cy17:0 and 16:1ω7c than the conventional farming practice, indicating that microbial stress was reduced by the input of organic fertilizer into soil. Based on principal component analyses (PCA) of soil microbial communities, ratios of cy17:0 to 16:1ω7c in orchid soil can be used as microbial indicators to distin‑ guish organically farmed orchard soil from conventionally farmed orchard -
Factors Affecting Soil Microbial Biomass and Functional Diversity with the Application of Organic Amendments in Three Contrasting Cropland Soils During a Field Experiment
RESEARCH ARTICLE Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment Ling Li1, Minggang Xu1*, Mohammad Eyakub Ali1, Wenju Zhang1, Yinghua Duan1, Dongchu Li2 a1111111111 1 National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China, 2 Qiyang Agro-ecosystem a1111111111 of National Field Experimental Station, Hunan, China a1111111111 a1111111111 * [email protected] a1111111111 Abstract The effects of soil type and organic material quality on the microbial biomass and functional OPEN ACCESS diversity of cropland soils were studied in a transplant experiment in the same climate during Citation: Li L, Xu M, Eyakub Ali M, Zhang W, Duan a 1-year field experiment. Six organic materials (WS: wheat straw, CS: corn straw, WR: Y, Li D (2018) Factors affecting soil microbial biomass and functional diversity with the wheat root, CR: corn root, PM: pig manure, CM: cattle manure), and three contrasting soils application of organic amendments in three (Ferralic Cambisol, Calcaric Cambisol and Luvic Phaeozem) were chosen. At two time contrasting cropland soils during a field points (at the end of the 1st and 12th months), soil microbial biomass carbon (C) and nitro- experiment. PLoS ONE 13(9): e0203812. https:// gen (N) (MBC and MBN) and Biolog Ecoplate substrate use patterns were determined, and doi.org/10.1371/journal.pone.0203812 the average well color development and the microbial functional diversity indices (Shannon, Editor: Jingdong Mao, Old Dominion University, Simpson and McIntosh indices) were calculated. -
The Activity and Kinetic Parameters of Oxidoreductases in Phaeozem in Response to Long-Term Fertiliser Management
Journal of Soil Science and Plant Nutrition The activity and kinetic parameters of oxidoreductases in phaeozem in response to long-term fertiliser management Z.C Shang 1,2,4, L.L Zhang1*, Z.J. Wu1, P. Gong1,4, D.P. Li 1, P. Zhu3 and H.J. Gao3 1Instituite of Applied Ecology, Chinese Academy of Sciences, P. O. Box 417, Shenyang, 110016, China. 2Shanghai Research Institute of Chemical Industry, Shanghai, 200062, China. 3Research Center of Agricultural Environment and Resources, Jilin Academy of Agricultural sciences, P. O. Box 306. Changchun, 130124, China. 4Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.*Corresponding author: [email protected] Abstract This study describes the effects of balanced versus nutrient-deficient fertilisation on soil nutrient content and selected oxidoreductase activity and kinetic parameters in a long-term (28 years) field experiment conducted using a phaeozem type soil in the Jilin Province of northeast China. As compared to no or unbalanced fertilisation, balanced fertilisation improved the overall chemical fertility of the soil and sig- nificantly increased the activities and Vmax values of soil dehydrogenase and cata- lase. Compared with control (CK), unbalanced fertilisation (with the exception of P deficiency) significantly increased the total carbon content and soil dehydrogenase activity but had less of an effect on the Vmax of the enzyme, whereas the soil cata- lase activity and its Vmax were less affected under unbalanced fertilisation condi- tions. The Km value of soil dehydrogenase increased with the application of chemi- cal NPK combined with farmyard manure but decreased under the application of NPK, NP, and PK. -
A Global Data Set of Soil Particle Size Properties
A Global Data Set of Soil Particle Size Properties Robert S. Webb, Cynthia E. Rosenzmig, and Elissa R. Levine SEPTEMBER 1991 NASA Technical Memorandum 4286 A Global Data Set of Soil Particle Size Properties Robert S. Webb Goddard Institute for Space Studies New York, New York Cynthia E. Rosenzweig Columbia University New York, New York Elissa R. Levine Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1991 A standardized global data set of soil horizon thicknesses and textures (particle size distributions) has been compiled from the FAO/UNESCO Soil Map of the World, Vols. 2-10 (1971-81). This data set will be used by the improved ground hydrology parameterization (Abramopoulos et al., 1988) designed for the GISS GCM (Goddard Institute for Space Studies General Circulation Model) Model 111. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File (Zobler, 1986), the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties. iii PWECZDjNNG PAGE BLANK MOT FILMED Introduction As land-surface parameterizations in GCMs become more sophisticated, more detailed types of soil data are needed. -
Annex: Soil Groups, Characteristics, Distribution and Ecosystem Services
Status of the World’s Main Report Soil Resources Annex Soil groups, characteristics, distribution and ecosystem services © FAO | Giuseppe Bizzarri © FAO INTERGOVERNMENTAL TECHNICAL PANEL ON SOILS Disclaimer and copyright Recommended citation: FAO and ITPS. 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109004-6 © FAO, 2015 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.