Neurocriminology

Total Page:16

File Type:pdf, Size:1020Kb

Neurocriminology Neurocriminology Neurocriminology Forensic and Legal Applications, Public Policy Implications Diana M. Concannon CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-63280-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Concannon, Diana M., author. Title: Neurocriminology : forensic and legal applications, public policy implications / Diana Concannon. Description: Boca Raton, FL : CRC Press, [2019] | Includes bibliographical references and index. Identifiers: LCCN 2018018719| ISBN 9781138632806 (hardback : alk. paper) | ISBN 9781315208039 (ebook) Subjects: LCSH: Criminology—Government policy. | Criminology. | Forensic sciences. Classification: LCC HV6025 .C588 2019 | DDC 364.3—dc23 LC record available at https://lccn.loc.gov/2018018719 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Can brain scans be used to determine whether a person’s inclined toward criminality or violent behavior? You will rule on that. Then Senator Joseph Biden Supreme Court nomination hearing of John Roberts Contents Author xiii Introduction xv 1 Neurocriminology: How Did We Get Here? A Brief History of Criminology 1 Introduction 1 The Pre-Classical Period: The Devil Made Him (or Her) Do It 2 The 18th Century and the Classical School 2 The 19th Century: Phrenology, the Positivists, and Lombroso 5 The 20th Century: Mainstream Criminology, Critical Criminology, Left Realism, and Conservative Criminology 9 Mainstream Criminology 10 Control Theories 13 The 21st Century: Precursors to Neurocriminology 20 Key Terms 23 Use Your Brain 24 Test Your Knowledge 24 Apply Your Knowledge 25 Bibliography 26 2 Brain Basics: How Neurocriminology Is Possible 29 Introduction 29 The “Neuro” of Neurocriminology 34 The Structure and Functions of the Brain 38 The Cerebral Cortex 38 Occipital Lobes 39 Temporal Lobes 40 Parietal Lobes 40 Frontal Lobes 41 The Limbic System 42 Hypothalamus 42 Hippocampus 42 vii viii Contents Amygdala 43 Cingulate Cortex 43 Brodmann’s Areas 44 Common Causes of Brain Dysfunction 45 Tumor 45 Stroke 46 Trauma 47 Epilepsy 49 Neurocognitive Disorders 50 Psychotic and Mood Disorders 51 Personality Disorders 52 Substance Abuse 53 Key Terms 55 Use Your Brain 57 Test Your Knowledge 57 Think About It 59 Bibliography 59 3 Overview of Advances in Neuroimaging 63 Introduction 63 How Neuroimaging Works 65 Structural Neuroimaging Techniques 66 Computed Tomography/Computerized Axial Tomography 66 Magnetic Resonance Imaging 66 Functional Neuroimaging Techniques 67 Electroencephalography/Evoked Potentials and Magnetoencephalography/Magnetic Source Imaging 68 Functional Magnetic Resonance Imaging 70 Positron Emission Tomography 71 Single-Photon Emission Computerized Tomography 71 Strengths and Limitations of Neuroimaging 72 Reliability 73 Validity 73 Inferential Gaps 73 Causation 74 Group-to-Individual Problem 74 Key Terms 75 Use Your Brain 75 Test Your Knowledge 75 Apply Your Knowledge 76 Bibliography 77 Contents ix 4 Neurocriminology: Preliminary Applications 79 Introduction 79 Charles Joseph Whitman 80 Jack Ruby 82 John Hinckley, Jr. 83 Vincent Gigante 87 Key Terms 90 Use Your Brain 90 Test Your Knowledge 90 Apply Your Knowledge 91 Bibliography 92 5 Criminals in the Lab 93 Introduction 93 Murderers 94 Predatory versus Affective Murderers 95 Murderers with Severe Mental Illness 97 Adolescent Murderers 98 Non-Homicidal Offenders 98 Sexual Offenders 101 Rapists 101 Pedophiles 104 White-Collar Criminals 105 Criminal Subtype Conclusions 105 Key Terms 106 Use Your Brain 106 Test Your Knowledge 106 Apply Your Knowledge 108 Bibliography 108 6 Neurocriminology in the Criminal Justice System: Prevention and Investigation 111 Prevention: The Brain Can Change 112 Roper v. Simmons 114 Graham v. Florida 117 Miller v. Alabama 119 Prevention and Intervention 121 The Brain and Early-Onset Antisocial Behaviors 122 Prevention and Early Intervention Efforts 124 Drug Courts 125 x Contents The Brain and Drug Abuse 125 Preliminary Findings 126 Veterans Treatment Courts 130 Neurocriminology and Specialty Courts: Possibilities and Limitations 136 Neuroscience and Criminal Investigation 137 Witness Memory Recovery 144 Lie Detection 146 Key Terms 152 Use Your Brain 153 Test Your Knowledge 153 Apply Your Knowledge 154 Bibliography 155 7 Neurocriminology in the Criminal Justice System: Prosecution and Sentencing 159 Introduction 159 Competency to Stand Trial 160 Guilt 164 Sentence Mitigation 172 The Sentencing of Brian Dugan 176 State of Florida v. Grady L. Nelson 179 Ineffective Use of Counsel 180 Glenn Douglas Anderson v. Marty Sirmons 180 Key Terms 181 Use Your Brain 182 Test Your Knowledge 182 Apply Your Knowledge 183 Bibliography 183 8 Neuroscience and Law: International Applications 185 Introduction 185 England and Wales 186 Canada 187 The Netherlands 187 India 189 Italy 190 Use Your Brain 192 Test Your Knowledge 192 Apply Your Knowledge 193 Bibliography 194 Contents xi 9 Neurocriminology: Present Context and Possible Future 195 Bibliography 197 Index 199 Author Diana M. Concannon, PsyD, PCI, is currently Associate Provost for Strategic Initiatives and Partnerships; Dean, California School of Forensic Studies (CSFS); and Director, California Psychology Internship Consortium (CPIC) at Alliant International University, based in San Diego, California. Dr. Concannon has worked at Alliant since 2009 and overseen the estab- lishment and set the curriculum for six California-based PsyD programs in Clinical Forensic Psychology, a PhD program in Clinical Forensic Psychology, a PhD program in Psychology, Public Policy & Law, a blended master’s pro- gram in Applied Criminology, and an online master’s program in Applied Criminology. She has taught courses on Advanced Theories of Personality, Forensic Ethics, Foundational Concepts of Victimology I: Victimology Investigations, Victimology Intervention, and Understanding the DSM-5. She is presently developing new programs to advance the university’s mis- sion and goals, including a Master’s of Science Forensic Behavioral Science, a Master’s of Science Forensic Leadership and Administration, and several Advanced Practice Certificates to support emergency responders. She is a forensic psychologist, licensed to practice in California, New York, Utah, and Washington, DC; a Professional Certified Investigator by the American Society for Industrial Security; a Rape Escape Instructor; and a Loyola Law School trained Mediator. She is the author of Kidnapping: An Investigator’s Guide to Profiling (2008) and Kidnapping: An Investigator’s Guide, Second Edition (2013), both with Elsevier. xiii Introduction In December 2017, the brain of Stephen Paddock, the 64-year-old gun- man responsible for the deadliest mass shooting in U.S. history, was sent to Stanford University for study. The ongoing investigation had yet to reveal why Paddock checked into a Las Vegas hotel on October 1, 2017 and opened fire from his 32nd story room, killing 58 and wounding more than 500 of the 22,000 who attended the concert below. Connections to terrorism or another shooter were ruled out early. Involvement of Paddock’s girlfriend, who Paddock had sent to her native country prior to the attack, was also ruled out. Paddock report- edly had no criminal history, was a retired accountant, and was financially secure. He was a high-stakes poker player. Some interviewed after the event described him as having “a God complex.” He had rented hotel rooms above music venues in other localities, but the significance of this (if any) was unclear. He was able to purchase firearms without raising any red flags; in addition to the 23
Recommended publications
  • Toward an Integrative Science of the Brain and Crime
    BioSocieties https://doi.org/10.1057/s41292-019-00167-3 COMMENTARY Mind the gap: toward an integrative science of the brain and crime Eyal Aharoni1 · Nathaniel E. Anderson2 · J. C. Barnes3 · Corey H. Allen4 · Kent A. Kiehl2 © Springer Nature Limited 2019 In the recent article, Criminalizing the brain: Neurocriminology and the production of strategic ignorance, Fallin et al. (2018) argue that most neuroscientists working with antisocial populations are guilty of suppressing, obfuscating, and erasing legiti- mate social explanations for criminal behavior as part of a strategic attempt to tout their reductionist preconceptions of behavior and to advance their own professional, extra-scientifc agendas. While we applaud their call for greater inclusion of social/ contextual factors into neurocriminological research, we fnd that they overstate the case against neurocriminology and understate important eforts by this emerg- ing community to generate signifcant and cross-disciplinary contributions to the understanding of antisocial behavior. Learning to identify and avoid such mischar- acterizations is critical for the pursuit of much-needed interdisciplinary research and collaboration on the prediction, explanation, and remediation of antisocial behavior. By critically evaluating Fallin et al.’s claims, we hope to strike a conciliatory bal- ance, which is more likely to promote integration rather than antagonism between disciplines. Fallin and colleagues correctly describe biosocial criminology as an emerging discipline that integrates historically neglected biological factors and neuroscientifc methods in the study of antisocial behavior. Indeed, this paradigm has demonstrated the value of genetics (Brunner et al. 1993), physiology (Latvala et al. 2015), bio- chemistry (Coccaro et al. 1998), and neuroimaging (Anderson and Kiehl 2012) for * Eyal Aharoni [email protected] 1 Department of Psychology, Georgia State University, P.O.
    [Show full text]
  • Neuroscience, Law, and Ethics T
    International Journal of Law and Psychiatry 65 (2019) 101459 Contents lists available at ScienceDirect International Journal of Law and Psychiatry journal homepage: www.elsevier.com/locate/ijlawpsy Introduction Neuroscience, Law, and Ethics T In his influential Hardwired Behavior: What Neuroscience Reveals concerning the relevance of neurosciences to the law, especially crim- about Morality (2005), Laurence Tancredi combined neuroscience, inal law.” (Meynen, 2016, p. 3, Meynen, 2014; Morse & Roskies, 2013; psychology, philosophy, legal theory and clinical cases to insightfully Glenn & Raine, 2014; Chandler, 2018). One example is the use of examine the role of brain structure and function in moral behavior. neuroimaging to support behavioral evidence in judging whether a Analyzing how neurobiology shapes reasoning and decision-making, he person performing a criminal act met cognitive and volitional condi- discussed questions such as whether or to what extent we have free will tions necessary for criminal responsibility. Functional imaging re- and can be morally and criminally responsible for our actions. Is our cording abnormal activity in prefrontal-limbic pathways may indicate behavior hardwired and thus determined by the brain? Is free will an impaired cognitive and emotional processing and impaired capacity to illusion? Can mental content be explained entirely in terms of neural deliberate and consider the consequences of what one does or fails to content? If the brain influences but does not determine behavior, then do. This and other forms of imaging may eventually offer a more fine- how much of what we think and do is up to us? In his new book, grained account of impaired inhibitory mechanisms in the brain.
    [Show full text]
  • The New BRAIN
    SPECIAL EDITION The New BRAIN MACLEAN’S EBOOK Contents Introduction Join us for a giant brainstorming session on what the world’s neuroscience superstars are keeping top of mind The glia club Once dismissed as ‘glue,’ glial cells, neuron’s little brother, have become the lodestone of brain research. But is it a good idea for scientists to herd in one direction? Charlie Gillis How to build a brain A philosopher and engineer has created the most complex simulated brain in the world. On $30,000 a year. Nick Taylor-Vaisey Mad beauty A conceptual photographer dusts off the jars of a brain collection from a Texas mental hospital David Graham They grow up so fast The latest research on a baby’s remarkable brain development, from recognizing right and wrong to the gift of memory Rosemary Counter Gone baby gone Why don’t we remember anything from earliest childhood? It’s called infantile amnesia. Emma Teitel MACLEAN’S EBOOK THE NEW BRAIN Memory and gender Emma Teitel The young and the restless No one knows why autistic kids are often night owls, but their parents can take heart: science is looking at some biological causes based in the brain Katherine DeClerq Crying out for attention How one psychologist is offering hope to parents worried about the stigma, safety and side effects of ADHD medication Hannah Hoag Mind the age gap Previously dismissed as lesser or defective, new research is revealing that the teenage brain is just as powerful as any adult’s Rosemary Counter No brawn, no brains Genetics may decide your upper and lower limits for cognitive
    [Show full text]
  • Tanksley, J.C
    Identifying psychological pathways to polyvictimization: evidence from a longitudinal cohort study of twins from the UK Peter T. Tanksley, J.C. Barnes, Brian B. Boutwell, Louise Arseneault, Avshalom Caspi, Andrea Danese, Helen L. Fisher, et al. Journal of Experimental Criminology ISSN 1573-3750 J Exp Criminol DOI 10.1007/s11292-020-09422-1 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Nature B.V.. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Journal of Experimental Criminology https://doi.org/10.1007/s11292-020-09422-1 Identifying psychological pathways to polyvictimization: evidence from a longitudinal cohort study of twins from the UK Peter T. Tanksley1 & J.C. Barnes1 & Brian B. Boutwell2,3 & Louise Arseneault4 & Avshalom Caspi4,5,6,7 & Andrea Danese4,8 & Helen L. Fisher4 & Terrie E. Moffitt4,5,6,7 # Springer Nature B.V. 2020 Abstract Objectives Examine the extent to which cognitive/psychological characteristics predict later polyvictimization. We employ a twin-based design that allows us to test the social neurocriminology hypothesis that environmental factors influence brain-based charac- teristics and influence behaviors like victimization.
    [Show full text]
  • Neuroimaging Abnormalities in Neurological Patients with Criminal Behavior
    Current Neurology and Neuroscience Reports (2018) 18:47 https://doi.org/10.1007/s11910-018-0853-3 BEHAVIOR (H S KIRSHNER, SECTION EDITOR) Neuroimaging Abnormalities in Neurological Patients with Criminal Behavior R. Ryan Darby1 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Purpose of Review Criminal behavior occurs in previously law-abiding neurological patients, including patients with traumatic brain injury, focal brain lesions, and dementia. Neuroimaging abnormalities in these patients allow one to explore the potential neuroanatomical correlates of criminal behavior. However, this process has been challenging because (1) It is difficult to determine the temporal relationship between criminal behavior and neurological disease onset; (2) Abnormalities in several different brain regions have been associated with criminal behavior; and (3) It is difficult to quantify neuroimaging abnormalities in individual subjects. Recent Findings Recent studies have begun to address these concerns, showing that neuroimaging abnormalities in patients with criminal behavior localize to a common brain network, rather than a single specific brain region. New methods have been developed to identify atrophy patterns in individual patients, but have not yet been used in neurological patients with criminal behavior. Summary Future advances will be important for making sure that neuroimaging data is used in a responsible manner in legal cases involving criminal behavior. Keywords Criminal . Moral . Brain lesions . Neurology . Frontal lobe . Brain networks Introduction he was killed by police [2]. At autopsy, he was found to have a malignant tumor in his right temporal lobe, prompting ques- Neurological diseases can cause profound changes to behav- tions about the degree to which his brain injury contributed to ior.
    [Show full text]
  • The Neurobiology of Violence: Biological Roots of Crime
    The Neurobiology of Violence: Neurocriminology CHARLES J. VELLA, PHD APRIL 9, 2015 THANKS TO ADRIAN RAINE, CHRISTOPHER M. FILLEY, KENT KIEHL This presentation is based on these books The Anatomy of Violence: The Psychopath The Biological Roots of Crime Whisperer by Adrian Raine by Kent Kiehl 2013 2015 Punishment of crime We should know the difference between who we are angry at and who we are afraid of. Protection for society: We need to segregate from society those of whom we are afraid Rehabilitation: We need to rehabilitate those with whom we are angry Aspen Neurobehavioral Conference Consensus Statement (Filley et al. Neuropsychiatry Neuropsychol Behav Neurol 2001; 14: 1-14) Working group representing neurology, psychiatry, neuropsychology, trauma surgery, nursing, evolutionary psychology, ethics, and law Aggression can be adaptive, but violence is a an aggressive act characterized by the unwarranted infliction of physical injury Violence can result from brain dysfunction, although social and evolutionary factors also contribute Study of neurobehavioral aspects – frontal lobe dysfunction, altered serotonin metabolism, and the influence of heredity – promises to lead to deeper understanding NGRI: Not Guilty by reason of insanity Not guilty by reason of insanity (NGRI) is a verdict issued in criminal cases whereby the defendant, determined to be legally insane, is held not responsible for his or her criminal actions The legal test of insanity, the right and wrong test as stated in the M’Naghten case (1843): did not know
    [Show full text]
  • An Exploration of Psychopathy As a Neuroscience Construct
    AN EXPLORATION OF PSYCHOPATHY AS A NEUROSCIENCE CONSTRUCT Silvian Roy A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Masters of Arts in Criminology. © Silvian Roy, Ottawa, Canada, 2018 Department of Criminology Faculty of Social Sciences University of Ottawa ii ABSTRACT Hare’s psychopathy construct as defined by the Psychopathy Checklist- Revised has been utilized internationally as a risk assessment instrument for quite some time. Despite this, since its inception it has and continues to raise criticism from the academic community. There is ongoing debate over what the construct entails and how it should be used. Most recent developments in the construct revolve around it being defined as a neurological manifestation. To explore the psychopathy construct’s connection with neuroscience, this thesis focusses on one foundational experiment by the most prominent team of researchers in the field. The exploration borrows from Science and Technology Studies, more specifically Actor-Network Theory and the semiotic of scientific texts. The goal of this analysis is not to criticize nor defend the psychopathy construct, but rather explore the facticity of psychopathy as a neuroscientific fact. Considering the widespread use of the construct across criminal justice systems and mental health practices, understanding the facticity of psychopathy is imperative. Our contention is that psychopathy as defined by neuroscience was not merely a pre-discovered fact of nature, but rather it is a fact that is hybrid; it is both built by researchers and a part of our natural world, social and real. Our findings reveal that the facticity of psychopathy as a neuroscience construct is reliant on it being a Boundary Object: a scientific object that is able to intersect multiple social worlds through its adaptability (Star & Griesemer, 1989).
    [Show full text]
  • Assessment Tasks 3 Publication Without Notice
    ANTH207 Psychological Anthropology S2 Day 2018 Dept of Anthropology Contents Disclaimer General Information 2 Macquarie University has taken all reasonable measures to ensure the information in this Learning Outcomes 2 publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, General Assessment Information 3 procedures or rules. The University reserves the right to make changes to any information in this Assessment Tasks 3 publication without notice. Users of this publication are advised to check the website Delivery and Resources 5 version of this publication [or the relevant faculty or department] before acting on any information in Unit Schedule 8 this publication. Policies and Procedures 9 Graduate Capabilities 10 Changes from Previous Offering 15 Changes since First Published 15 https://unitguides.mq.edu.au/unit_offerings/82581/unit_guide/print 1 Unit guide ANTH207 Psychological Anthropology General Information Unit convenor and teaching staff Unit convenor Gabriele Marranci [email protected] Contact via [email protected] +61-2-9850-8040 TBA on iLearn Payel Ray [email protected] Credit points 3 Prerequisites ANTH150 or ANTH151 or (12cp at 100 level or above) or admission to GDipArts Corequisites Co-badged status Unit description This unit introduces psychological anthropology, including emotional, cognitive, developmental, and perceptual dynamics across cultures. Psychological anthropology studies the relation between individual psychology and sociocultural diversity, for example, between psychopathology and social structure, between personality differences and childrearing practices, or between perceptual experience and a society's ideologies about the senses. We will explore a wide range of perspectives, from evolutionary psychology to neuroanthropology, and address such topics as consciousness including spirit possession, and cultural variation in insanity and impairment.
    [Show full text]
  • ANTH207 Psychological Anthropology S2 Day 2016
    ANTH207 Psychological Anthropology S2 Day 2016 Dept of Anthropology Contents Disclaimer General Information 2 Macquarie University has taken all reasonable measures to ensure the information in this Learning Outcomes 2 publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, Assessment Tasks 3 procedures or rules. The University reserves the right to make changes to any information in this Delivery and Resources 6 publication without notice. Users of this publication are advised to check the website Unit Schedule 8 version of this publication [or the relevant faculty or department] before acting on any information in Policies and Procedures 8 this publication. Graduate Capabilities 10 Changes from Previous Offering 15 https://unitguides.mq.edu.au/unit_offerings/56857/unit_guide/print 1 Unit guide ANTH207 Psychological Anthropology General Information Unit convenor and teaching staff Unit convenor Gabriele Marranci [email protected] Contact via [email protected] +61-2-9850-8040 TBA on iLearn Credit points 3 Prerequisites ANTH150 or ANTH151 or 12cp or admission to GDipArts Corequisites Co-badged status Unit description This unit introduces psychological anthropology, including emotional, cognitive, developmental, and perceptual dynamics across cultures. Psychological anthropology studies the relation between individual psychology and sociocultural diversity, for example, between psychopathology and social structure, between personality differences and childrearing practices, or between perceptual experience and a society's ideologies about the senses. We will explore a wide range of perspectives, from evolutionary psychology to neuroanthropology, and address such topics as consciousness including spirit possession, and cultural variation in insanity and impairment.
    [Show full text]
  • Basic Clinical Neuroscience Free
    FREE BASIC CLINICAL NEUROSCIENCE PDF Paul A. Young,Paul H. Young,Daniel L. Tolbert | 464 pages | 26 Feb 2015 | Lippincott Williams and Wilkins | 9781451173291 | English | Philadelphia, United States Basic and Clinical Neuroscience Goodreads helps you keep track of books you want to read. Want to Read saving…. Want to Read Currently Reading Read. Other editions. Enlarge cover. Error rating Basic Clinical Neuroscience. Refresh and try again. Open Preview See a Problem? Details if other :. Thanks for telling us about the problem. Return to Book Page. Basic Clinical Neuroscience by Paul A. Young. Paul H. Daniel L. Basic Clinical Neuroscience offers medical and other health professions students a clinically oriented description of human neuroanatomy and neurophysiology. This text provides the anatomic and pathophysiologic basis for understanding neurologic abnormalities through concise descriptions of functional systems with an emphasis on medically important structures and clinicall Basic Clinical Neuroscience Clinical Neuroscience offers medical and other health professions students a clinically oriented description of human neuroanatomy and neurophysiology. This text provides the anatomic and pathophysiologic basis Basic Clinical Neuroscience understanding neurologic abnormalities through concise descriptions of functional systems with an emphasis on medically important structures and clinically important pathways. It emphasizes the localization of specific anatomic structures and pathways with neurological deficits, using anatomy enhancing 3-D illustrations. Basic Clinical Neuroscience also includes boxed clinical information throughout the text, a key term glossary section, and review questions at the end of each chapter, making this book comprehensive enough to be an excellent Board Exam preparation resource in addition to a great professional training textbook. The fully searchable text Basic Clinical Neuroscience be available online at thePoint.
    [Show full text]
  • Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: a Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Behavioral/Cognitive Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: A Randomized, Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial Olivia Choy1, Adrian Raine2 and Roy H. Hamilton3 1Department of Psychology, Nanyang Technological University, 14 Nanyang Drive, Singapore 637332 2Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Jerry Lee Center of Criminology, 3809 Walnut St, Philadelphia, PA 19104 3Department of Neurology, University of Pennsylvania, 3710 Hamilton Walk, Philadelphia, PA 19104 DOI: 10.1523/JNEUROSCI.3317-17.2018 Received: 21 November 2017 Revised: 20 March 2018 Accepted: 6 June 2018 Published: 2 July 2018 Author contributions: O.C., A.R., and R.H.H. designed research; O.C. performed research; O.C. analyzed data; O.C., A.R., and R.H.H. edited the paper; O.C. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. Corresponding Author: Olivia Choy, Nanyang Technological University, Department of Psychology, 14 Nanyang Drive, Singapore 637332. Email: [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.3317-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. Copyright © 2018 the authors PREFRONTAL STIMULATION REDUCES AGGRESSIVE INTENT 1 1 Stimulation of the Prefrontal Cortex Reduces Intentions to Commit Aggression: A Randomized, 2 Double-Blind, Placebo-Controlled, Stratified, Parallel-Group Trial.
    [Show full text]
  • Forensic Practitioners' Expectations and Moral Views Regarding
    Original Article Forensic practitioners’ expectations and moral views regarding neurobiological interventions in offenders with mental disorders Jona Speckera,* , Farah Focquaertb, Sigrid Sterckxb and Maartje H. N. Schermera aDepartment of Medical Ethics and Philosophy of Medicine, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands. E-mail: [email protected] bDepartment of Philosophy & Moral Sciences, Bioethics Institute Ghent, Ghent University, Ghent, Belgium. *Corresponding author. Abstract Neurobiological and behavioural genetic research gives rise to speculations about potential biomedical interventions to prevent, contain, or treat violent and antisocial behaviour. These developments have stirred considerable ethical debate on the prospects, threats, and limi- tations of integrating neurobiological and behavioural genetic interventions in forensic psychiatric practices, yet little is known about how forensic practitioners perceive these potential interventions. We conducted a qualitative study to examine (i) the extent to which forensic practitioners expect that effective biomedical interventions will be developed and integrated in their daily work practice and (ii) their normative views concerning those potential biomedically informed interventions. We focused on potential biomedical possibilities to lower aggression, the possible usage of neu- roimaging in assessing legal responsibility, and the potential use of biomarkers in assessing risk for future violent and antisocial behaviour. Forensic practitioners
    [Show full text]