Forensic Practitioners' Expectations and Moral Views Regarding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward an Integrative Science of the Brain and Crime
BioSocieties https://doi.org/10.1057/s41292-019-00167-3 COMMENTARY Mind the gap: toward an integrative science of the brain and crime Eyal Aharoni1 · Nathaniel E. Anderson2 · J. C. Barnes3 · Corey H. Allen4 · Kent A. Kiehl2 © Springer Nature Limited 2019 In the recent article, Criminalizing the brain: Neurocriminology and the production of strategic ignorance, Fallin et al. (2018) argue that most neuroscientists working with antisocial populations are guilty of suppressing, obfuscating, and erasing legiti- mate social explanations for criminal behavior as part of a strategic attempt to tout their reductionist preconceptions of behavior and to advance their own professional, extra-scientifc agendas. While we applaud their call for greater inclusion of social/ contextual factors into neurocriminological research, we fnd that they overstate the case against neurocriminology and understate important eforts by this emerg- ing community to generate signifcant and cross-disciplinary contributions to the understanding of antisocial behavior. Learning to identify and avoid such mischar- acterizations is critical for the pursuit of much-needed interdisciplinary research and collaboration on the prediction, explanation, and remediation of antisocial behavior. By critically evaluating Fallin et al.’s claims, we hope to strike a conciliatory bal- ance, which is more likely to promote integration rather than antagonism between disciplines. Fallin and colleagues correctly describe biosocial criminology as an emerging discipline that integrates historically neglected biological factors and neuroscientifc methods in the study of antisocial behavior. Indeed, this paradigm has demonstrated the value of genetics (Brunner et al. 1993), physiology (Latvala et al. 2015), bio- chemistry (Coccaro et al. 1998), and neuroimaging (Anderson and Kiehl 2012) for * Eyal Aharoni [email protected] 1 Department of Psychology, Georgia State University, P.O. -
Cognitive Ability and Education: How Behavioural Genetic Research Has Advanced Our Knowledge and Understanding of Their Association
Cognitive ability and education: how behavioural genetic research has advanced our knowledge and understanding of their association Margherita Malanchini1,2,3, Kaili Rimfeld2, Andrea G. Allegrini2, Stuart J. Ritchie2, & Robert Plomin2 1 Department of Biological and Experimental Psychology, Queen Mary University of London, United Kingdom. 2 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom. 3 Population Research Center, The University of Texas at Austin, United States. Correspondence: Margherita Malanchini, Department of Biological and Experimental Psychology, Queen Mary University of London, Office 2.02, G.E. Fogg Building, Mile End Road, London E1 4NS. E-mail: [email protected] Abstract Cognitive ability and educational success predict positive outcomes across the lifespan, from higher earnings to better health and longevity. The shared positive outcomes associated with cognitive ability and education are emblematic of the strong interconnections between them. Part of the observed associations between cognitive ability and education, as well as their links with wealth, morbidity and mortality, are rooted in genetic variation. The current review evaluates the contribution of decades of behavioural genetic research to our knowledge and understanding of the biological and environmental basis of the association between cognitive ability and education. The evidence reviewed points to a strong genetic basis in their association, observed from middle childhood to old age, which is amplified by environmental experiences. In addition, the strong stability and heritability of educational success are not driven entirely by cognitive ability. This highlights the contribution of other educationally relevant noncognitive characteristics. Considering both cognitive and noncognitive skills as well as their biological and environmental underpinnings will be fundamental in moving towards a comprehensive, evidence-based model of education. -
To What Extent Does the Heritability Of
1 Bonamy R. Oliver & Alison Pike University of Sussex 'To what extent does the heritability of known features of development such as intelligence limit the potential of policy that attempts to lessen intergenerational inequalities such as early intervention, social mobility, child poverty or the social class attainment gap'. In the current report, we argue that the extent to which aspects of human development are heritable has little impact on the importance of policy that aims to ameliorate the adverse effects of environmental or intergenerational inequalities. We first address common misconceptions about heritability and behavioural genetics that can lead to inappropriate assertions about research findings and their implications for policy. We then move to demonstrate our vision of what behavioural genetics can offer early intervention science and attempts to lessen intergenerational inequality. What is behavioural genetics? Behavioural genetic research uses a variety of quasi-experimental designs to understand the role of genetic and environmental influence on variation in psychological traits such as general intelligence (e.g., Deary, Johnson, & Houlihan, 2009), disruptive behaviour (e.g., Rhee, & Waldman, 2002), and well-being (e.g., Bartels, 2015). The extent to which variance in a given trait is explained by genetic variance is termed ‘heritability’, and is explained further below. Shared environmental influences refer to experiences that contribute to sibling similarity, while non- shared environmental influences refer to differences in experience that contribute to differences between siblings in a family. The most common of these research designs are twin and adoption 2 studies. The twin design compares monozygotic (MZ: ‘identical’) and dizygotic (DZ: fraternal, ‘not identical’) twin similarity for specific psychological traits. -
Neuroscience, Law, and Ethics T
International Journal of Law and Psychiatry 65 (2019) 101459 Contents lists available at ScienceDirect International Journal of Law and Psychiatry journal homepage: www.elsevier.com/locate/ijlawpsy Introduction Neuroscience, Law, and Ethics T In his influential Hardwired Behavior: What Neuroscience Reveals concerning the relevance of neurosciences to the law, especially crim- about Morality (2005), Laurence Tancredi combined neuroscience, inal law.” (Meynen, 2016, p. 3, Meynen, 2014; Morse & Roskies, 2013; psychology, philosophy, legal theory and clinical cases to insightfully Glenn & Raine, 2014; Chandler, 2018). One example is the use of examine the role of brain structure and function in moral behavior. neuroimaging to support behavioral evidence in judging whether a Analyzing how neurobiology shapes reasoning and decision-making, he person performing a criminal act met cognitive and volitional condi- discussed questions such as whether or to what extent we have free will tions necessary for criminal responsibility. Functional imaging re- and can be morally and criminally responsible for our actions. Is our cording abnormal activity in prefrontal-limbic pathways may indicate behavior hardwired and thus determined by the brain? Is free will an impaired cognitive and emotional processing and impaired capacity to illusion? Can mental content be explained entirely in terms of neural deliberate and consider the consequences of what one does or fails to content? If the brain influences but does not determine behavior, then do. This and other forms of imaging may eventually offer a more fine- how much of what we think and do is up to us? In his new book, grained account of impaired inhibitory mechanisms in the brain. -
Holmes CV Current.Pdf
Biosketch NAME POSITION TITLE Andrew Holmes, Ph.D. Acting Chief, Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health EDUCATION/TRAINING DEGREE INSTITUTION AND LOCATION (if applicable) YEAR(s) FIELD OF STUDY Department of Psychology, University of B.A. (Hons) 1992-1995 Psychology Newcastle upon Tyne, UK Department of Psychology, University of Ph.D. 1995-1999 Behavioral Pharmacology Leeds, UK (Mentor, RJ Rodgers) National Institute of Mental Health, Visiting Fellow 1999-2003 Behavioral Neuroscience National Institutes of Health, USA (Mentor, JN Crawley) Awards 2008: United States - Israel Binational Science Foundation Four-Year Grant Award 2008: Alcoholism and Stress: A Framework for Future Treatment Strategies, Young Investigator Award 2007: Senior Preclinical Wyeth Psychopharmacology Award, British Association of Psychopharmacology 2006: Young Scientist Award, International Behavioural and Neural Genetics Society 2005: National Alliance for Research on Schizophrenia and Depression Young Investigator Award 2004: NIH Pre-IRTA Committee Awards for outstanding contributions to the post-baccalaureate training and education 2003: Anxiety Disorders Association of America/American College of Neuropsychopharmacology Career Development Travel Award 2003: Howard Hughes Medical Institute Student Mentor Award 2002: NIH Fellows Award for Research Excellence 2002: New York Academy of Sciences Travel Award 2001: American College of Neuropsychopharmacology/Bristol-Myers -
Holding Back the Genes: Limitations of Research Into Canine Behavioural
van Rooy et al. Canine Genetics and Epidemiology 2014, 1:7 http://www.cgejournal.org/content/1/1/7 REVIEW Open Access Holding back the genes: limitations of research into canine behavioural genetics Diane van Rooy*, Elizabeth R Arnott, Jonathan B Early, Paul McGreevy and Claire M Wade Abstract Canine behaviours that are both desirable and undesirable to owners have a demonstrable genetic component. Some behaviours are breed-specific, such as the livestock guarding by maremmas and flank sucking seen in Dobermanns. While the identification of genes responsible for common canine diseases is rapidly advancing, those genes underlying behaviours remain elusive. The challenges of accurately defining and measuring behavioural phenotypes remain an obstacle, and the use of variable phenotyping methods has prevented meta-analysis of behavioural studies. International standardised testing protocols and terminology in canine behavioural evaluations should facilitate selection against behavioural disorders in the modern dog and optimise breeding success and performance in working dogs. This review examines the common hurdles faced by researchers of behavioural genetics and the current state of knowledge. Keywords: Behaviour, Dog, Genetics, Heritability Lay summary against behavioural disorders in the dog, and optimise All canine behaviour, whether desirable or undesirable breeding success and performance in working dogs. to owners, has a genetic component. Studies of “showing This review examines the common hurdles faced by eye” and “bark” which compared the behaviour of off- researchers of behavioural genetics and the current state spring with parents concluded that behaviour does not of knowledge. follow simple Mendelian inheritance. Some behaviours are breed-specific, such as “livestock guarding” by mar- Introduction emmas and “flank sucking” seen in Dobermanns. -
Genetics and Human Behaviour
Cover final A/W13657 19/9/02 11:52 am Page 1 Genetics and human behaviour : Genetic screening: ethical issues Published December 1993 the ethical context Human tissue: ethical and legal issues Published April 1995 Animal-to-human transplants: the ethics of xenotransplantation Published March 1996 Mental disorders and genetics: the ethical context Published September 1998 Genetically modified crops: the ethical and social issues Published May 1999 The ethics of clinical research in developing countries: a discussion paper Published October 1999 Stem cell therapy: the ethical issues – a discussion paper Published April 2000 The ethics of research related to healthcare in developing countries Published April 2002 Council on Bioethics Nuffield The ethics of patenting DNA: a discussion paper Published July 2002 Genetics and human behaviour the ethical context Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Internet: www.nuffieldbioethics.org Cover final A/W13657 19/9/02 11:52 am Page 2 Published by Nuffield Council on Bioethics 28 Bedford Square London WC1B 3JS Telephone: 020 7681 9619 Fax: 020 7637 1712 Email: [email protected] Website: http://www.nuffieldbioethics.org ISBN 1 904384 03 X October 2002 Price £3.00 inc p + p (both national and international) Please send cheque in sterling with order payable to Nuffield Foundation © Nuffield Council on Bioethics 2002 All rights reserved. Apart from fair dealing for the purpose of private study, research, criticism or review, no part of the publication may be produced, stored in a retrieval system or transmitted in any form, or by any means, without prior permission of the copyright owners. -
Open Universiteit Research Portal
Adaptive and Genomic Explanations of Human Behaviour: Citation for published version (APA): Barendregt, M., & van Hezewijk, R. W. J. V. (2005). Adaptive and Genomic Explanations of Human Behaviour: Might Evolutionary Psychology Contribute to Behavioural Genomics? Biology & Philosophy, 20, 57-78. https://doi.org/10.1007/s10539-005-0388-2 DOI: 10.1007/s10539-005-0388-2 Document status and date: Published: 01/01/2005 Document Version: Peer reviewed version Document license: CC BY-NC-ND Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
The New BRAIN
SPECIAL EDITION The New BRAIN MACLEAN’S EBOOK Contents Introduction Join us for a giant brainstorming session on what the world’s neuroscience superstars are keeping top of mind The glia club Once dismissed as ‘glue,’ glial cells, neuron’s little brother, have become the lodestone of brain research. But is it a good idea for scientists to herd in one direction? Charlie Gillis How to build a brain A philosopher and engineer has created the most complex simulated brain in the world. On $30,000 a year. Nick Taylor-Vaisey Mad beauty A conceptual photographer dusts off the jars of a brain collection from a Texas mental hospital David Graham They grow up so fast The latest research on a baby’s remarkable brain development, from recognizing right and wrong to the gift of memory Rosemary Counter Gone baby gone Why don’t we remember anything from earliest childhood? It’s called infantile amnesia. Emma Teitel MACLEAN’S EBOOK THE NEW BRAIN Memory and gender Emma Teitel The young and the restless No one knows why autistic kids are often night owls, but their parents can take heart: science is looking at some biological causes based in the brain Katherine DeClerq Crying out for attention How one psychologist is offering hope to parents worried about the stigma, safety and side effects of ADHD medication Hannah Hoag Mind the age gap Previously dismissed as lesser or defective, new research is revealing that the teenage brain is just as powerful as any adult’s Rosemary Counter No brawn, no brains Genetics may decide your upper and lower limits for cognitive -
The Nature and Significance of Behavioural Genetic Information
Postprint This is a pre-copyedited, author-produced PDF of an article accepted for publication in Theoretical Medicine and Bioethics following peer review. The definitive publisher-authenticated version [Newson, A.J. (2004) “The nature and significance of behavioural genetic information.” Theoretical Medicine and Bioethics, 25: 89–111.] is available online at http://link.springer.com/article/10.1023/B:META.0000033764.50604.85 The nature and significance of behavioural genetic information Ainsley Newson BSc (Hons) PhD, 2004 Abstract In light of the human genome project, establishing the genetic aetiology of complex human diseases has become a research priority within Western medicine. However, in addition to the identification of disease genes, numerous research projects are also being undertaken to identify genes contributing to the development of human behavioural characteristics, such as cognitive ability and criminal tendency. The permissibility of this research is obviously controversial: will society benefit from this research, or will it adversely affect our conceptions of ourselves and each other? When assessing the permissibility of this research, it is important to consider the nature and deterministic significance of behavioural genetic information. Whilst to date there has been much discussion and debate about the properties of genetic information per se and genetic determinism, this has not been applied to behavioural genetic research and its ethical implications. Therefore, this paper elucidates how behavioural genetic information can be distinguished from different from other types of genetic and non-genetic information and also synthesises the determinative significance of genetic factors for the development of human behavioural traits. Undertaking this analysis enables the ethical issues raised by this research to be debated in an appropriate context and indicates that separate policy considerations are warranted. -
Genetics and Human Behaviour: the Ethical Context a Guide to the Report
Genetics and human behaviour: the ethical context a guide to the Report Introduction Do we inherit our behaviour? Or The Nuffield Council on Bioethics does it depend on our upbringing? has published a Report, Genetics There is little doubt that genes and human behaviour: the ethical do have some influence on our context, which examines the ethical, personality. But how much? legal and social issues that Research to find out how our genes behavioural genetics raises. This influence our behaviour is complex summary sets out some of the and controversial. There are concerns arguments and recommendations both about the science itself and the which are discussed in more detail potential applications. in the Report. [Notes in square brackets throughout refer to chapters and paragraphs in the Report]. What is behavioural genetics? Research in the field of behavioural genetics aims to find out how genes influence our behaviour. Researchers are trying to identify particular genes, or groups of genes, that are associated with behavioural traits, and investigating the role of environmental factors. Scientific background The Report considers behavioural traits such What is normal? as intelligence, personality (including anxiety, novelty-seeking and shyness), antisocial behaviour We use a statistical definition of ‘normal’ to refer (including aggression and violent behaviour) and to the range of variation, usually about 95% of sexual orientation. The focus is on behaviour the population, which does not contain anyone within the normal range of variation, rather than with clinical disorders or diseases. This use of diseases or disorders. ‘normal’ does not imply any value judgement about different forms of behaviour. -
Behavioral Genetics and Neurogenetics» for 37.04.01 «Cognitive Sciences and Technologies: from Neuron to Cognition», Master of Science
National Research University Higher School of Economics Syllabus for the course «Behavioral genetics and neurogenetics» for 37.04.01 «Cognitive sciences and technologies: from neuron to cognition», Master of Science Government of Russian Federation Federal State Autonomous Educational Institution of High Education «National Research University Higher School of Economics» Faculty of Social science Department of Psychology Syllabus for the course «Behavioral genetics and neurogenetics» 37.04.01 «Cognitive sciences and technologies: from neuron to cognition», Master of Science Authors: Yulia Kovas, Ph.D in behavioral genetics, professor, Goldsmiths University of London - [email protected] And Olga V. Sysoeva, PhD of psychological sciences, Senior researcher in MEG Center, MGPPU, [email protected] Approved by Academic Council: «_29_»__августа___ 2017 г., № _51___________ Academic supervisor of the «Cognitive sciences and technologies: from neuron to cognition» Dr. Anna Shestakova __________________________ Moscow, 2017 This syllabus may not be used by other departments of the University and by any other institutions without permission of the Author. National Research University Higher School of Economics Syllabus for the course «Behavioral genetics and neurogenetics» for 37.04.01 «Cognitive sciences and technologies: from neuron to cognition», Master of Science Summary “Behavioral genetics” will promote an understanding of the current state of affairs with regards to behavioural genetics. Basic principles as well as recent developments will be explored in relation to a broad range of phenotypes. Historical and ethical issues will be discussed. The structure and function of DNA will be studied in the context of investigations into individual variation in psychological traits. Students will be introduced to behavioural genomic analysis, such as investigating gene-environment interaction, testing educational interventions, and testing the generalist genes hypotheses - using information on measured genes and measured environments.