Reef Fish Community Structure in the Tropical Eastern Pacific (Panama

Total Page:16

File Type:pdf, Size:1020Kb

Reef Fish Community Structure in the Tropical Eastern Pacific (Panama Helgol Mar Res DOI 10.1007/s10152-006-0045-4 ORIGINAL ARTICLE Reef fish community structure in the Tropical Eastern Pacific (Panama´): living on a relatively stable rocky reef environment Arturo Dominici-Arosemena Æ Matthias Wolff Received: 12 September 2005 / Revised: 2 May 2006 / Accepted: 3 May 2006 Ó Springer-Verlag and AWI 2006 Abstract We compared the community structure of and structural complexity. Species diversity increases reef fish over different physical complexities in 12 with habitat complexity and benthic diversity. It seems study zones of Bahı´a Honda, Gulf of Chiriquı´ (BH- that water current strength, tides and waves which se- GCH), Tropical Eastern Pacific (TEP), Panama, aim- lect for swimming, play an important role in the com- ing at an analysis of the importance of the physical munity organization. The study region has been structure provided by corals, rocks and benthic sessile proposed as a refuge-centre in the TEP, where reef organisms. This was the first region that emerged in the fishes that evolved on coral reefs have shifted their Isthmus of Panama; it exhibits the oldest benthic fauna distribution onto rocky reef habitats. and has constant conditions in terms of temperature and salinity. Two hundred and eighty-eight visual fish Keywords Fish diversity Æ Distribution Æ Trophic censuses were conducted on 48 benthic transects from groups Æ Rocky reef Æ Tropical Eastern Pacific February to July 2003. One hundred and twenty-six fish species of 44 families were found. Plankton feeding pomacentrids and labrids along with haemulids that Introduction feed on mobile invertebrates were the most abundant, particularly in shallow areas. Fourteen species showed Ocean basins may promote speciation within a region size-segregations between zones, suggesting ontoge- during periods of low sea levels, and extensive shallow netic migrations (smaller fishes in shallow high-com- habitats can reduce faunal losses by acting as a refuge plexity zones, larger-sized fishes in deeper habitats). or centre of accumulation (Springer and Williams 1994; Highly mobile and site-attached genera were abundant Paulay 1996; Wilson and Rosen 1998; Palumbi 1997; in most shallow, wave-exposed zones particularly on Bellwood and Hughes 2001). It has been suggested that exposed rocky substrates. Planktivores were the most reef fish have evolved along with the coral communi- abundant, followed by carnivores, feeders on mobile ties they are associated with, but that their ancestors invertebrate and piscivores. Herbivores and feeders on have existed even prior to the coral reefs (Bellwood sessile invertebrate were lower in abundance. Species and Wainwright 2002). Thus, the recent reef dwellers richness exceeds that of any other studied region close would represent derived forms, with ancestors which to the mainland in the TEP and correlates with sub- would have occupied non-reef habitats (Bellwood and strate diversity, increasing size-heterogeneity of holes Wainwright 2002). In this respect, it should be con- sidered that tropical reef fishes indeed occupy non- coral built habitats such as rocky shores that are pre- Communicated by H.-D. Franke dominant in the Tropical Eastern Pacific (TEP). The fish fauna in this region has a north–south division, and & A. Dominici-Arosemena ( ) Æ M. Wolff subdivisions can be based on the highly localized Centre for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany endemism of small benthic rocky reef-associated fishes e-mail: [email protected] (Hastings and Robertson 2001). In the Central American 123 Helgol Mar Res Isthmus, besides the Golfo Dulce in Costa Rica, a Gasparini 2000). However, the available information fiord-like tropical embayment with anoxic deep waters on the TEP does not allow for the determination of (Quesada-Alpı´zar and Morales-Ramı´rez 2004; Wolff gradients in fish diversity in the Mesoamerican region et al. 1996) and low coral development (Corte´s 1990), and for the verification of the basic assumption of the first uplifted region where new reef development higher diversity of reef fish in the TWA compared to started is the open area of the Gulf of Chiriquı´ (GCH). the TEP. Here are the oldest corals of modern reefs in the TEP The main objective of the present study was thus to displaying maximum thickness and accretion rates characterise the fish assemblages of Bahı´a Honda (BH- (Corte´s 1993, 1997). This region comprises the largest GCH, TEP) along spatial scales and gradients of sub- archipelago of rocky islands in the TEP (Kwiecinski strate complexity. and Chial 1983; Glynn and Mate´ 1997). Due to its It is hypothesized that due to its environmental inaccessibility, detailed biological studies are still stability (as compared to other TEP regions), its rel- lacking. The fish community structure of this region is ative old age and great habitat diversity, a relatively particularly interesting from the perspective of popu- rich reef fish community has evolved. Since this and lation biology and biogeography due to its geological other regions of the TEP have been subjected to a history and environmental stability (Kwiecinski and massive decrease in coral diversity due to geological Chial 1983; Glynn and Mate´ 1997). The GCH forms changes, we suspect that reef fish may have evolved part of the Panamic province of the TEP, and there is and diversified on the available rocky substrates with only one recent inventory in the Coiba National Park high benthic diversity and complexity in a similar way by Vega and Villarreal (2003), which includes many as have other reef fish communities on (diverse) coral reef fish with the exception of the cryptic ones (e.g. reefs elsewhere. We thus propose that corals do not gobiids, chaenopsids). Some pioneering studies have play the same reef community-structuring role here as already addressed variations of the reef fish community in the Indo-Pacific and the Caribbean, and we pos- structure in the reef areas in TEP (Zapata and Morales tulate that reef fish communities may just represent 1997; Arburto-Oropeza and Balart 2001; Dominici- species guilds related to hard substrates of diverse Arosemena et al. 2005). Belonging to the lower Mes- complexity. oamerica, this region offers unique opportunities for The TEP region is the most unstable province in the comparative fish community studies (e.g. non-reef vs. whole Pacific where reef communities are adapted to coral reef environments; TEP vs. Tropical Western geological changes, and to temperature decreases due Atlantic, TWA) (Robertson 1998). It is believed that to coastal upwelling. In the non-upwelling GCH this region has a very diverse fish fauna, and that a (where temperatures are higher with relatively low significant component of it is made up of resident seasonality) fishes and benthic fauna that recruit from transpacific fishes that may live on reefs elsewhere in more unstable regions may be adapted to short scale the Pacific (Robertson 1998). There is a sufficient disturbances, particularly warming events (e.g. ENSO; diversity of habitats allowing for meaningful biological for disturbance resistance in corals on this region, see comparisons with the lower Mesoamerican TWA. D¢Croz and Mate´ 2004). Even though research is For comparative purposes we have conducted re- pending in this field, the fishes in GCH, TEP may have cently a similar study on the Caribbean west side of the developed some resistance to environmental changes, Isthmus in Bocas del Toro (Dominici-Arosemena and and suitable habitats should have promoted their spe- Wolff 2005). Both the Caribbean and the Pacific side of ciation and diversification in the region. Western Panama exhibit a rich landscape, and it was The study thus aims at an analysis of the relative these parts, which in geologic times (7–3 million years importance of the physical structure provided by cor- ago) became first interconnected by a shallow shelf als, rocks and benthic sessile organisms for the reef fish (while Eastern Panama was still lacking a shelf area) community organization. when the isthmus started to rise, finally resulting in the Furthermore, we studied the coexistence of subor- fusion of the North and South American continents dinate species with dominant species by differential and the separation of the two oceans (Bermingham habitat use (i.e. different mobility and home range, et al. 1997). size frequencies, territoriality, trophic organization), While the Indo-Pacific regions have been suggested the importance of wave exposure and current regime as evolutionary source of many reef fish species for structuring the community, and the role of reef worldwide (Mora et al. 2003), the TWA is believed to type (i.e. coral reefs vs. rocky reefs) and general be the centre of diversity for both fish and corals in the substrate diversity and complexity for shaping the fish Atlantic Ocean (Briggs 1995; Veron 1995; Floeter and community. 123 Helgol Mar Res Materials and methods other regions close to the mainland. Coral and rocky reefs are present also off shore on the Canales de Study area Afuera Island, which is part of the Coiba National Park (Cardiel et al. 1997). The Pacific coast of Panama is divided by the Azuero Twelve study zones were classified in terms of depth, Peninsula into two major areas with notable oceano- substrate topography, cover, kind of benthic organisms graphic differences: the upwelling Gulf of Panama to and inorganic substrates. The selection of study zones the East and, protected from northern trade winds by was based on a previous survey aimed at identifying the mountains, the non-upwelling stable GCH to the areas of different but characteristic habitats of the re- West (D¢Croz and Robertson 1997; Glynn and Mate´ gion. 1997). Study sites were located in the latter (7°50¢N, 81°35¢W; Fig. 1). Sampling was carried out from Feb- Habitat characterisation ruary to July 2003. The GCH has a rainy climate compared to the Gulf In each of the 12 zones, 4 benthic transects of 30 m of Panama.
Recommended publications
  • Modeling the Processes Affecting Larval Haddock (Melanogrammus Aeglefinus) Survival on Georges Bank
    Modeling the processes affecting larval haddock (Melanogrammus aeglefinus) survival on Georges Bank IM4ASSACHUSETTS INSTITUTE Colleen Mary Petrik OF TECHNOLOGY B.S., Marine Science and Biology University of Miami, 2005 LIBRARIES Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the ARCHIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION February 2011 0 2011 Colleen Mary Petrik. All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author Joint Program in Oceanography/Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 17 December 2010 Certified by Cabell S. Davis upervisor Accepted by Simon Thorrold Chair, Joint Committee for Biological Oceanography Massachusetts Institute of Technology and Woods Hole Oceanographic Institution 2 Modeling the processes affecting larval haddock (Melanogrammus aeglefinus) survival on Georges Bank by Colleen Mary Petrik Submitted to the Department of Biology on 17 December 2010, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Oceanography Abstract The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. Recruitment is the single most important natural event controlling year-class strength and biomass in fish populations. As evident in Georges Bank haddock, Melanogrammusaeglefinus, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. Spatially explicit coupled biological-physical individual-based models are ideal for studying the processes of feeding, growth, and predation during the larval stage.
    [Show full text]
  • Increased Rainfall Remarkably Freshens Estuarine and Coastal Waters on the Pacific Coast of Panama: Magnitude and Likely Effects on Upwelling and Nutrient Supply
    Global and Planetary Change 92-93 (2012) 130–137 Contents lists available at SciVerse ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Increased rainfall remarkably freshens estuarine and coastal waters on the Pacific coast of Panama: Magnitude and likely effects on upwelling and nutrient supply Ivan Valiela a,⁎, Luis Camilli b, Thomas Stone c, Anne Giblin a, John Crusius d, Sophia Fox e, Coralie Barth-Jensen a, Rita Oliveira Monteiro a, Jane Tucker a, Paulina Martinetto f, Carolynn Harris a a Marine Biological Laboratory, Woods Hole, MA 02543, United States b Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States c Woods Hole Research Center, Falmouth, MA 02540, United States d US Geological Survey, School of Oceanography, University of Washington, Seattle, WA 98195, United States e Cape Cod National Seashore, National Park Service, Wellfleet, MA 02667, United States f Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Cientifícas y Técnicas, Universidad Nacional de Mar del Plata, CC573, Mar del Plata, Argentina article info abstract Article history: Increased intensity of rainfall events during late 2010 led to a remarkable freshening of estuarine, near- and Received 23 September 2011 off-shore waters in coastal Pacific Panama. The increased rain intensity during the wet season of 2010 Accepted 10 May 2012 lowered salinity of estuarine and coastal waters to levels unprecedented in previous years. Fresher conditions Available online 18 May 2012 were most marked within estuaries, but even at 6 km from shore, salinities were 8–13‰ lower during the 2010 wet season, compared to a lowering of up to 2‰ during previous wet seasons.
    [Show full text]
  • Pagos Islands Reef Fishes
    Bull Mar Sci. 90(1):533–549. 2014 research paper http://dx.doi.org/10.5343/bms.2013.1036 Darwin’s fishes: phylogeography of Galápagos Islands reef fishes 1 Department of Ecology and Giacomo Bernardi 1 * Evolutionary Biology, University Marina L Ramon 1 of California Santa Cruz, 100 1 + Shaffer Road, Santa Cruz, Yvette Alva-Campbell California 95060. John E McCosker 2 2 California Academy of Sciences, Giuseppe Bucciarelli 1 San Francisco, California 94118. Lauren E Garske 3 3 University of California Davis, Benjamin C Victor 4 Bodega Marine Laboratory, P.O. 5 Box 247, Bodega Bay, California Nicole L Crane 94923. 4 Ocean Science Foundation, 4051 Glenwood, Irvine, California 92604, and Guy Harvey Research ABSTRACT.—Working in the Galápagos Islands and Institute, Nova Southeastern surrounding areas, we examined the relationship between University, 8000 North Ocean population structure, a precursor to allopatric speciation, in Drive, Dania Beach, Florida species of reef fishes that exhibit different life history traits 33004. and three types of distributions in a nested setting: endemic 5 Department of Biology, Cabrillo (restricted to the Galápagos Islands), insular (Galápagos College, Aptos, California 95060. and neighboring islands), and Panamic (tropical eastern + Present address: San Francisco Pacific). We used a combination of population structure State University, 1600 Holloway and coalescent approaches to assess the degree of genetic Ave., San Francisco, California population structure in the three groups of fish species. 94132. In addition, we evaluated the level of inter-island genetic * Corresponding author email: diversity in endemic species to determine if Galápagos <[email protected]>, fishes, like their terrestrial counterparts, could be used as telephone: +1 (831) 459 5124, fax: a system to study allopatric speciation in the sea.
    [Show full text]
  • Largest Global Shark Biomass Found in the Northern Galápagos Islands of Darwin and Wolf
    A peer-reviewed version of this preprint was published in PeerJ on 10 May 2016. View the peer-reviewed version (peerj.com/articles/1911), which is the preferred citable publication unless you specifically need to cite this preprint. Salinas-de-León P, Acuña-Marrero D, Rastoin E, Friedlander AM, Donovan MK, Sala E. 2016. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4:e1911 https://doi.org/10.7717/peerj.1911 Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf Pelayo Salinas de León, David Acuña-Marrero, Etienne Rastoin, Alan M Friedlander, Mary K Donovan, Enric Sala Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t ha-1 on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.
    [Show full text]
  • Watershed Deforestation and Down- Estuary Transformations Alter Sources, Transport, and Export of Suspended Particles in Panamanian Mangrove Estuaries
    Ecosystems (2014) 17: 96–111 DOI: 10.1007/s10021-013-9709-5 Ó 2013 Springer Science+Business Media New York Watershed Deforestation and Down- Estuary Transformations Alter Sources, Transport, and Export of Suspended Particles in Panamanian Mangrove Estuaries I. Valiela,1* M. Bartholomew,1 A. Giblin,1 J. Tucker,1 C. Harris,1 P. Martinetto,2 M. Otter,1 L. Camilli,3 and T. Stone4 1Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts 02543, USA; 2Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Universidad Nacional de Mar del Plata, CC573 Mar del Plata, Argentina; 3Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; 4Woods Hole Research Center, Falmouth, Massachusetts 02540, USA ABSTRACT We identified eight Panamanian watersheds in particulate matter were mostly erased by within- which conversion from wet tropical forest to pas- estuary transformations. Isotopic signatures of C, N, tures differed and assessed the effects of degree of and S in particulate matter demonstrated strong deforestation, and down-estuary transformations, land-sea couplings, and indicated that the direction on the suspended particulate matter discharged from of the coupling was asymmetrical, with terrestrial the watersheds, entering, traversing through man- and estuarine sources delivering particulate materi- grove estuaries, and emerging into coastal waters. als to coastal waters and sediments. Mangrove Deforested watersheds discharged larger concen- estuaries therefore both act as powerful modulators trations of suspended particulate matter, with lower of human activities on land, while also exporting % C and N, higher mineral content, and heavier particulate materials to sea. isotopic signatures into fresh reaches of estuaries.
    [Show full text]
  • Proposal on Inclusion of Holacanthus Clarionensis in Appendix II (Unofficial Translation)
    Proposal on Inclusion of Holacanthus clarionensis in Appendix II (unofficial translation) http://www.reef2rainforest.com SEAFDEC Expert Meeting on the Commercially- exploited Aquatic Species 16-17 May 2016, Windsor Suites Hotel, Bangkok, Thailand Taxonomy Class: Actinopterygii Order: Perciformes Family Pomacanthidae Genre: Holacanthus Species: Holacanthus clarionensis (Gilbert, 1890) Common names: Clarion 2 productividad primaria, profundidad de zona eufótica y salinidad, además de la batimetría y tipo de suelo (MODIS-Aqua, 2002-2012; WOA09-NOAA, 2015; GEBCO, 2015; Moreno, et al., 1998; Ocean Productivity, 2015; van Heuven, et al., 2011). El modelo se corrió empleando “randomseed” con un 25% de registros de prueba y los resultados indicaron que el análisis de área bajo la curva de características operativas (AUC) fue mayor que la que se daría por el azar, por lo que el desempeño del modelo es adecuado (Reyes- Bonilla y Martínez, 2016). En la Figura 1 (der.) se muestra el mapa logístico resultante de este modelado. Distribution • Found in the Eastern Central Pacific, Revillagigedo Archipelago (Mexico) • Occasional presence in Bahia de Banderas and Clipperton island (France) Revillagigedo Archipelago Habitat • Coral and rocky reefs, blocks, walls and cliffs • Within 30m depth • ‘station cleaning’ with blankets Figura 1. Izquierda: Datos de ocurrencia actual de la especie H. clarionensis(Manta (círculos rellenos)birostris y reg)istros de individuos transeúntes de la especie (círculos vacíos). Derecha: Mapa de probabilidad de ocurrencia actual de la especie H. Biologicalclarionensis (corte characteristics al 0.5 de probabilidad). Fuente: Reyes-Bonilla y Martínez (2016) • HábitatIndividual growth rate (k) is 0.46 and maximum length of 211 mm Se localiza en un ámbito marino demersal, asociado a arrecifes coralinos y rocosos, así como bloques, • paredesSexual y acantilados.maturity isLos between individuos 1.5comúnmente & 2.5 yrs se (sizesencuentran 10 dentroto 13 decm), los primeroslongevity 30 ism 10de yrs • profundidadReproduces (Pyle ettwice al., 2010 a ayear).
    [Show full text]
  • Holacanthus Clarionensis
    Hernández-Velasco et al. Marine Biodiversity Records (2016) 9:49 DOI 10.1186/s41200-016-0062-1 MARINE RECORD Open Access Occurrence of Holacanthus clarionensis (Pomacanthidae), Stegastes leucorus, and Stegastes acapulcoensis (Pomacentridae) at Magdalena Bay, B.C.S., Mexico Arturo Hernández-Velasco1*, Francisco J. Fernández-Rivera-Melo1, Sara M. Melo-Merino2 and Juan Carlos Villaseñor-Derbez1,3 Abstract Pomacanthids and Pomacentrids are mainly distributed in tropical and subtropical regions, and inhabit shallow rocky and coral reefs. Due to their colorful patterns and unusual body shapes, they have been widely targeted by aquarium fish trade; these species are of great commercial interest. Here we document the occurrence of one Pomacanthid (Holacanthus clarionensis), and two Pomacentrids (Stegastes acapulcoensis, and S. leucorus) north of their reported distribution range during the 2014 warm water period in the eastern Tropical Eastern Pacific. Sightings took place at Magdalena-Almejas Bay complex, located in the western margin of the Baja California Peninsula. Using a series of abiotic data for the Tropical Eastern Pacific, we created a maximum entropy model for each species and identified that high probability of occurrence at Magdalena-Almejas Bay complex was only denoted for S. leucorus. Here we report the occurrence of H. clarionensis, S. acapulcoensis and S. leucorus 70 km, 300 km, and 300 km north of the northernmost reported limits. Keywords: Reef fish, Pomacanthidae, Pomacentridae, Zoogeography, Occurrence Introduction Chromis alta (Greenfield & Woods, 1980), C. atrilobata Pomacanthids (angelfishes) and Pomacentrids (damsel- (Gill, 1862), C. limbaughi (Greenfield & Woods, 1980), fishes) are mainly distributed in tropical and subtropical Hypsypops rubicundus (Girard, 1854), Microspathodon regions, and inhabit rocky and coral reefs between 1 and bairdii (Gill, 1862), M.
    [Show full text]
  • Examples of Symbiosis in Tropical Marine Fishes
    ARTICLE Examples of symbiosis in tropical marine fishes JOHN E. RANDALL Bishop Museum, 1525 Bernice St., Honolulu, HI 96817-2704, USA E-mail: [email protected] ARIK DIAMANT Department of Pathobiology, Israel Oceanographic and Limnological Research Institute National Center of Mariculture, Eilat, Israel 88112 E-mail: [email protected] Introduction The word symbiosis is from the Greek meaning “living together”, but present usage means two dissimilar organisms living together for mutual benefit. Ecologists prefer to use the term mutualism for this. The significance of symbiosis and its crucial role in coral reef function is becoming increasingly obvious in the world’s warming oceans. A coral colony consists of numerous coral polyps, each like a tiny sea anemone that secretes calcium carbonate to form the hard skeletal part of coral. The polyps succeed in developing into a coral colony only by forming a symbiotic relationship with a free-living yellowish brown algal cell that has two flagella for locomotion. These cells penetrate the coral tissue (the flagella drop off) to live in the inner layer of the coral polyps collectively as zooxanthellae and give the yellowish brown color to the coral colony. As plants, they use the carbon dioxide and water from the respiration of the polyps to carry out photosynthesis that provides oxygen, sugars, and lipids for the growth of the coral. All this takes place within a critical range of sea temperature. If too warm or too cold, the coral polyps extrude their zooxanthellae and become white (a phenomenon also termed “bleaching”). If the sea temperature soon returns to normal, the corals can be reinvaded by the zooxanthellae and survive.
    [Show full text]
  • Reproductive Biology of the King Angelfish <I>Holacanthus Passer</I
    BULLETIN OF MARINE SCIENCE, 65(3): 677–685, 1999 REPRODUCTIVE BIOLOGY OF THE KING ANGELFISH HOLACANTHUS PASSER VALENCIENNES 1846 IN THE GULF OF CALIFORNIA, MEXICO Marcial Arellano-Martínez, Bertha P. Ceballos-Vázquez, Federico García-Domínguez and Felipe Galván-Magaña ABSTRACT Aspects of the reproductive biology of Holacanthus passer, a valuable ornamental fish, were studied. Male and female specimens were collected monthly from June 1992 to May 1993 in the Gulf of California. The sex ratio differed significantly from 1:1 over the size range of the sample; females prevailed at small lengths and males at larger lengths. The ovarian and testes development was analyzed by histological techniques and the reproductive cycle was determined. H. passer is a partial spawner with asynchronous development of the gonads. The period of reproductive activity was from April to No- vember coinciding with the highest values of gonadosomatic index and temperature. The gonadosomatic index adequately describes the reproductive activity of the species. The king angelfish Holacanthus passer V., ranges from the central Gulf of California to Ecuador and the Galápagos Islands (Gotshall, 1982). Their juveniles are caught in the Gulf of California for sale to aquaria because of their great color pattern, yielding prices as high as US $100 each in the international market (Pérez-España and Abitia-Cárdenas, 1996). Despite their importance in the aquarium industry, there are no studies on their population biology or the impacts of exploitation and studies on their biology are scarce (Pérez-España and Abitia-Cárdenas, 1996). The fishery for H. passer juveniles is presently prohibited because their excessive ex- ploitation caused the depletion of the populations.
    [Show full text]
  • Phylogenetic Relationships of the Pomacanthidae (Pisces: Teleostei) Inferred from Allozyme Variation
    J. Zool., Lond. (1998) 246, 215±231 # 1998 The Zoological Society of London Printed in the United Kingdom Phylogenetic relationships of the Pomacanthidae (Pisces: Teleostei) inferred from allozyme variation K. C. Chung and N. Y. S. Woo* Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (Accepted 23 February 1998) Abstract Phylogenetic relationships of 31 pomacanthid species representing all genera were investigated by horizontal starch gel electrophoresis. Nei's genetic distances (D) were calculated and dendrograms constructed from allozyme variation in 23 loci. The average D value was 0.03 between conspeci®c colour variants, 0.40 between congeneric subgenera, and 1.27 between confamilial genera. From the dendrograms the following were revealed: (1) the generic status of Apolemichthys arcuatus and Holacanthus venustus,as well as the generic and subgeneric status of Centropyge multifasciata were con®rmed; (2) the subgeneric status of Xiphypops was con®rmed; (3) Pygoplites diacanthus was found to be closely related to members of the subgenus Pomacanthus; (4) Pomacanthus zonipectus was found to be biochemically distinct from its con-subgeners; (5) the genera Pomacanthus and Holacanthus are more closely related than currently thought; (6) the Genicanthus species might warrant a subfamily of their own. Key words: Pomacanthidae, biochemical systematics, phylogeny, heterozygosity, allozymes, electrophoresis, genetic distance INTRODUCTION comprehensively revised the systematics of the group and proposed the probable af®nities between genera. He The Pomacanthidae consists of more than 80 brilliantly recognized seven genera: Chaetodontoplus, Pomacanthus coloured species that inhabit tropical coral reefs around (including the subgenera Pomacanthodes and Poma- the world.
    [Show full text]
  • El Niño Drives a Widespread Ulcerative Skin Disease Outbreak in Galapagos Marine Fishes
    University of Rhode Island DigitalCommons@URI Fisheries, Animal and Veterinary Sciences Faculty Publications Fisheries, Animal and Veterinary Sciences 11-9-2018 El Niño Drives a Widespread Ulcerative Skin Disease Outbreak in Galapagos Marine Fishes Robert W. Lamb Franz Smith Anaide W. Aued Pelayo Salinas-de-León Jenifer Suarez See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/favs_facpubs Citation/Publisher Attribution Lamb, R. W., Smith, F., Aued, A. W., Salinas-de-Leon, P., Suarez, J., Gomez-Chiarri, M, Smolowitz, R., Giray, C., Witman, J. D. (2018). El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fshes. Scientific Reports 8:16602. doi:10.1038/s41598-018-34929-z Available at: http://dx.doi.org/10.1038/s41598-018-34929-z This Article is brought to you for free and open access by the Fisheries, Animal and Veterinary Sciences at DigitalCommons@URI. It has been accepted for inclusion in Fisheries, Animal and Veterinary Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Robert W. Lamb, Franz Smith, Anaide W. Aued, Pelayo Salinas-de-León, Jenifer Suarez, Marta Gomez- Chiarri, Roxanna Smolowitz, Cem Giray, and Jon D. Witman This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/favs_facpubs/28 www.nature.com/scientificreports OPEN El Niño drives a widespread ulcerative skin disease outbreak in Galapagos marine fshes Received: 17 May 2018 Robert W. Lamb 1, Franz Smith1, Anaide W. Aued2, Pelayo Salinas-de-León3,4, Accepted: 29 October 2018 Jenifer Suarez5, Marta Gomez-Chiarri6, Roxanna Smolowitz7, Cem Giray8 & Jon D.
    [Show full text]
  • Marine Environmental Research 103 (2015) 95E102
    Marine Environmental Research 103 (2015) 95e102 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs * Ines G. Viana a, b, Ivan Valiela a, , Paulina Martinetto c, Rita Monteiro Pierce a, Sophia E. Fox d a The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02534, USA b Instituto Espanol~ de Oceanografía, Centro Oceanografico de La Coruna,~ Apdo. 130, 15080 La Coruna,~ Spain c Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Tecnicas, Universidad Nacional de Mar del Plata, CC573 Mar del Plata, Argentina d Cape Cod National Seashore, National Park Service, 99 Marconi Site Road, Wellfleet, MA 02667, USA article info abstract Article history: Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were Received 13 July 2014 measured to 1) determine whether the degree of deforestation of tropical forests on the contributing Received in revised form watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs 17 October 2014 within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds Accepted 24 October 2014 differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food Available online 25 October 2014 webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify pro- ducers or organic sources that supported the estuarine food web.
    [Show full text]