Flight Status of Hayabusa2: Asteroid Sample Return Mission to C-Type

Total Page:16

File Type:pdf, Size:1020Kb

Flight Status of Hayabusa2: Asteroid Sample Return Mission to C-Type FlightS4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return mission to small body. JAXA launched Hayabusa2 in 2014, which will explore the C-type asteroid Ryugu (1999JU3), and will return back to the Earth in 2020. • Round-trip mission – High specific impulse ion engine for continuous-thrust trajectory control. • In-situ science at “Ryugu” – 1.5year proximity operation at “Ryugu” – Four landers, four remote science instruments. • Touch down & sample collection – Two normal touch down, one pin-point touch down (to the artificial crater) are planned. • Artificial crater generation – Kinetic impact on the asteroid surface to create a 2m-class crater. – Sub-surface structure of the asteroid can be acquired. 2 Mission Scenario of Hayabusa2 June-July 2018 : Arrival at Ryugu Launch The spacecraft observes Dec. 3, 2014 ▲ the asteroid, releases the Dec. 3, 2015 small rovers and the Earth swingby lander, and executes multiple samplings. The spacecraft carries Sample analysis an impactor. New Experiment Earth Return Nov.-Dec. 2020 Nov.-Dec. 2019 : Departure The impactor collides to the 2019 surface of the asteroid. Thesamplewillbeobtained from the newly created crater. 3 Hayabusa2 Spacecraft (1/2) Deployable Xband LGA Camera (DCAM3) Xband HGA Kaband HGA Solar Array Panel Xband MGA Star Trackers Near Infrared Spectrometer (NIRS3) Reentry Capsule +Z +X Sampler Horn LIDAR ONC‐W2 +Y Science Payload Size : 1m×1.6m×1.25m (body) Mass: 609kg (Wet) 4 Hayabusa2 Spacecraft (2/2) Ion Engine RCS thrusters ×12 ONC‐T, ONC‐W1 MASCOT Lander Thermal Infrared Imager (TIR) MINERVA‐II Rovers Small Carry‐on +Z Impactor (SCI) +X Science Payload Target Markers ×5 +Y 5 Robotic Exploration with 12 Deployable “Robots” Reentry Capsule Deployable Camera (DCAM3) MASCOT Lander MINERVA‐II2 Rover MINERVA‐II1 Rovers Target Markers Small Carry‐on Impactor (SCI) Trajectory to Ryugu Hayabusa2 trajectory Ryugu orbit Ryugu arrival Earth orbit (Jun-Jul. 2018) Sun Launch (Dec. 3, 2014) Earth swing-by We are here! (Dec. 3, 2015) (January 28,2016) 7 Events around the Earth Swingby Nov 3, 2015 TCM1 Celestial Pole Nov 10-14, 2015 TIR Earth Moon Obs. LIDAR Optical Link Nov 26, 2015 Nov 26, 2015 Eclipse in TCM2 ONC-T Earth Moon Obs. NIRS3 Earth Moon Obs. (9:58UTC) Dec 1, 2015 TCM3―Cancelled 2015/12/3 ONC-W2 Earth Obs. Eclipse (20min) Dec 3, 2015 Asteroid Relative Visual NAV Test Closest Approach to the Sun Moon Orbit Closest Approach Dec 4-8, 2015 ONC-T Earth Obs. (10:08:07UTC) NIRS3 Earth Obs. To the Sun Dec 11-21, 2015 TIR Earth Obs. LIDAR Optical Link Eclipse out NIRS3 Earth Obs. (10:18UTC) Dec 22, 2015 Return to Cruising Attitude 8 HYB2 Earth Swingby Closest Passage: Altitude 3090km (@10:08:07) over Hawaii, Swingby Deflection angle 83deg Velocity at Perigee 10.3km/s, Interplanetary Velocity 30.3→31.9km/s (+1.6km/s increase) 9 Earth Swing-by Result (Guidance and Navigation) • The targeting accuracy was 300m, which was within 0.3σ of the swing-by target ellipsoid. Targeting ellipsoid • Primary NAV was done by JAXA and to reach Ryugu excellent support including shadow navigation by JPL/DSN. • Good training also for Reentry trajectory guidance. ※1 tick=10km. Contour refers to altitude. ■ Target center ● Final Swingby Target ● Swingby Result ( ● and ● are 300m apart) 10 ONC-T Earth-Moon System, Pseudo Color, Nov.26, 2015 3,000,000km Earth Moon 11 ONC-T, Earth Pseudo Color, Dec.4, 2015 400,000km 12 Operations of Science Instruments ONC-T TIR Australia Pseudo Color image Plants exist region Thermal Image NIRS3 LIDAR Earth Moon 1-way link from the earth to the spacecraft strong (mV) m) μ signal level wave length length ( wave 受信レベル data NO weak LIDAR Signal Level (mV) Level (mV) LIDAR Signal Absorption by water on the earth LIDAR Dec. 19, 2015 Distance 6.70 million km (= 0.045AU) 13 The Earth images at swing-by (animation) The images of the Earth taken by ONC-W2.Thetime(UTC)ofeach image and the distance from the Earth are shown in the photo. The images were taken from 00:00 to 09:15 (UTC) on December 3, 2015. The viewing angle is at about 60 degrees. 14 Observation of Hayabusa2 from Ground-Based Telescope • Observation campaign :Conducted as an outreach activity • The observation was successful in 36 places out of 82. (Japan, US, NZ, AUS) ■●:successful Bisei Spaceguard Center Hoshinoko Yakata Nishiharima Obs. Results of Observation Campaign (by Takeshi Yasuda,JAPOS) 15 Conclusion • Hayabusa2 is flying normally. The Earth swingby on Dec. 3, 2015 was successful. • The propulsive cruise using ion engine will start in the next March. Total of 7000hrs of ion engine operation is scheduled to reach Ryugu. • Detailed proximity science operation schedule is being planned. Largest unknown: Ryugu’s rotation state 2015 2016 2017 2018 2019 2020 12 3 10 12 4 6 7Approach 12Reentry 12 Commis- Return EDVEGA SWBY Transfer Cruise Phase Proximity Phase Events sioning Cruise Launch Earth Swingby Ryugu Arrival Ryugu Departure EDL Operation (Dec.3) (Dec.3) (Jun-Jul.) (Nov-Dec.) (Nov-Dec.) Sothern Hemisphere Stations Operation Solar Conj. (CAN/MLG) OpNAV Oct May Jun Jul Dec Jan IES Powered Cruise Mar Jun Apr Jun Dec May Nov Jun Dec Feb Jul Oct 16 International Collaboration USA NASA Europe DLR CNES Australia SLASO/DIISR DoD/AOSG AQIS/AC 17 Collaboration with OSIRIS-REx Team Hayabusa2 OSIRIS-REx C-type Collaborations B-type Science Education Outreach ... (162173) Ryugu (101955) Bennu 18 Dec.3, 2015, Dec.11, 2015, Right after the Earth swing by success Hayabusa2 Joint Science Team Meeting 19 Thank you for Listening 20.
Recommended publications
  • The Messenger
    10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a ground­based spectroscopic comple­ thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5­m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa­ crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1­m decision to take the time to build a fully Mission Gemini telescopes and the 8.3­m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2­m telescopes and providing a dozen ESO’s mission is to enable scientific dis­ time scale, while the Large Binocular Tele­ foci for a carefully thought­out comple­ coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations.
    [Show full text]
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • A Ballistics Analysis of the Deep Impact Ejecta Plume: Determining Comet Tempel 1’S Gravity, Mass, and Density
    Icarus 190 (2007) 357–390 www.elsevier.com/locate/icarus A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1’s gravity, mass, and density James E. Richardson a,∗,H.JayMeloshb, Carey M. Lisse c, Brian Carcich d a Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA c Planetary Exploration Group, Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA d Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA Received 31 March 2006; revised 8 August 2007 Available online 15 August 2007 Abstract − In July of 2005, the Deep Impact mission collided a 366 kg impactor with the nucleus of Comet 9P/Tempel 1, at a closing speed of 10.2 km s 1. In this work, we develop a first-order, three-dimensional, forward model of the ejecta plume behavior resulting from this cratering event, and then adjust the model parameters to match the flyby-spacecraft observations of the actual ejecta plume, image by image. This modeling exercise indicates Deep Impact to have been a reasonably “well-behaved” oblique impact, in which the impactor–spacecraft apparently struck a small, westward-facing slope of roughly 1/3–1/2 the size of the final crater produced (determined from initial ejecta plume geometry), and possessing an effective strength of not more than Y¯ = 1–10 kPa. The resulting ejecta plume followed well-established scaling relationships for cratering in a medium-to-high porosity target, consistent with a transient crater of not more than 85–140 m diameter, formed in not more than 250–550 s, for the case of Y¯ = 0 Pa (gravity-dominated cratering); and not less than 22–26 m diameter, formed in not less than 1–3 s, for the case of Y¯ = 10 kPa (strength-dominated cratering).
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • Stardust Sample Return
    National Aeronautics and Space Administration Stardust Sample Return Press Kit January 2006 www.nasa.gov Contacts Merrilee Fellows Policy/Program Management (818) 393-0754 NASA Headquarters, Washington DC Agle Stardust Mission (818) 393-9011 Jet Propulsion Laboratory, Pasadena, Calif. Vince Stricherz Science Investigation (206) 543-2580 University of Washington, Seattle, Wash. Contents General Release ............................................................................................................... 3 Media Services Information ……………………….................…………….................……. 5 Quick Facts …………………………………………..................………....…........…....….. 6 Mission Overview …………………………………….................……….....……............…… 7 Recovery Timeline ................................................................................................ 18 Spacecraft ………………………………………………..................…..……...........……… 20 Science Objectives …………………………………..................……………...…..........….. 28 Why Stardust?..................…………………………..................………….....………............... 31 Other Comet Missions .......................................................................................... 33 NASA's Discovery Program .................................................................................. 36 Program/Project Management …………………………........................…..…..………...... 40 1 2 GENERAL RELEASE: NASA PREPARES FOR RETURN OF INTERSTELLAR CARGO NASA’s Stardust mission is nearing Earth after a 2.88 billion mile round-trip journey
    [Show full text]
  • An Artificial Impact on the Asteroid (162173) Ryugu Formed a Crater in the Gravity-Dominated Regime M
    An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, K. Shirai, H. Sawada, K. Ishibashi, R. Honda, N. Sakatani, et al. To cite this version: M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, et al.. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, American Association for the Advancement of Science, 2020, 368 (6486), pp.67-71. 10.1126/science.aaz1701. hal-02986191 HAL Id: hal-02986191 https://hal.archives-ouvertes.fr/hal-02986191 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Submitted Manuscript Title: An artificial impact on the asteroid 162173 Ryugu formed a crater in the gravity-dominated regime Authors: M. Arakawa1*, T. Saiki2, K. Wada3, K. Ogawa21,1, T. Kadono4, K. Shirai2,1, H. Sawada2, K. Ishibashi3, R. Honda5, N. Sakatani2, Y. Iijima2§, C. Okamoto1§, H. Yano2, Y. 5 Takagi6, M. Hayakawa2, P. Michel7, M. Jutzi8, Y. Shimaki2, S. Kimura9, Y. Mimasu2, T. Toda2, H. Imamura2, S. Nakazawa2, H. Hayakawa2, S.
    [Show full text]
  • Updated Inflight Calibration of Hayabusa2's Optical Navigation Camera (ONC) for Scientific Observations During the C
    Updated Inflight Calibration of Hayabusa2’s Optical Navigation Camera (ONC) for Scientific Observations during the Cruise Phase Eri Tatsumi1 Toru Kouyama2 Hidehiko Suzuki3 Manabu Yamada 4 Naoya Sakatani5 Shingo Kameda6 Yasuhiro Yokota5,7 Rie Honda7 Tomokatsu Morota8 Keiichi Moroi6 Naoya Tanabe1 Hiroaki Kamiyoshihara1 Marika Ishida6 Kazuo Yoshioka9 Hiroyuki Sato5 Chikatoshi Honda10 Masahiko Hayakawa5 Kohei Kitazato10 Hirotaka Sawada5 Seiji Sugita1,11 1 Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan 2 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan 3 Meiji University, Kanagawa, Japan 4 Planetary Exploration Research Center, Chiba Institute of Technology, Chiba, Japan 5 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan 6 Rikkyo University, Tokyo, Japan 7 Kochi University, Kochi, Japan 8 Nagoya University, Aichi, Japan 9 Department of Complexity Science and Engineering, The University of Tokyo, Chiba, Japan 10 The University of Aizu, Fukushima, Japan 11 Research Center of the Early Universe, The University of Tokyo, Tokyo, Japan 6105552364 Abstract The Optical Navigation Camera (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibration. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read- out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC.
    [Show full text]
  • Volume 1, #1 2021 May 14 Published on Behalf of the International Astronomical Union by the WG Small Bodies Nomenclature
    Volume 1, #1 2021 May 14 Published on behalf of the International Astronomical Union by the WG Small Bodies Nomenclature. ISSN <applied for> Cover image: Navigation image of (1) Ceres, obtained by the DAWN mission. Courtesy NASA/JPL-CALTECH. WGSBN Bull. 1, #1 Table of Contents Editorial Notice.....................................................................................................................8 New Names of Minor Planets...............................................................................................8 (3708) Socus = 1974 FV1...............................................................................................9 (4035) Thestor = 1986 WD1...........................................................................................9 (4489) Dracius = 1988 AK..............................................................................................9 (4715) Medesicaste = 1989 TS1.....................................................................................9 (5258) Rhoeo = 1989 AU1..............................................................................................9 (5311) Rutherford = 1981 GD1.......................................................................................9 (5346) Benedetti = 1981 QE3.........................................................................................9 (5648) Axius = 1990 VU1...............................................................................................9 (5766) Carmelofalco = 1986 QR3..................................................................................9
    [Show full text]
  • Planet Earth Taken by Hayabusa-2
    Space Science in JAXA Planet Earth May 15, 2017 taken by Hayabusa-2 Saku Tsuneta, PhD JAXA Vice President Director General, Institute of Space and Astronautical Science 2017 IAA Planetary Defense Conference, May 15-19,1 Tokyo 1 Brief Introduction of Space Science in JAXA Introduction of ISAS and JAXA • As a national center of space science & engineering research, ISAS carries out development and in-orbit operation of space science missions with other directorates of JAXA. • ISAS is an integral part of JAXA, and has close collaboration with other directorates such as Research and Development and Human Spaceflight Technology Directorates. • As an inter-university research institute, these activities are intimately carried out with universities and research institutes inside and outside Japan. ISAS always seeks for international collaboration. • Space science missions are proposed by researchers, and incubated by ISAS. ISAS plays a strategic role for mission selection primarily based on the bottom-up process, considering strategy of JAXA and national space policy. 3 JAXA recent science missions HAYABUSA 2003-2010 AKARI(ASTRO-F)2006-2011 KAGUYA(SELENE)2007-2009 Asteroid Explorer Infrared Astronomy Lunar Exploration IKAROS 2010 HAYABUSA2 2014-2020 M-V Rocket Asteroid Explorer Solar Sail SUZAKU(ASTRO-E2)2005- AKATSUKI 2010- X-Ray Astronomy Venus Meteorogy ARASE 2016- HINODE(SOLAR-B)2006- Van Allen belt Solar Observation Hisaki 2013 4 Planetary atmosphere Close ties between space science and space technology Space Technology Divisions Space
    [Show full text]
  • (OSIRIS-Rex) Asteroid Sample Return Mission
    Planetary Defense Conference 2013 IAA-PDC13-04-16 Trajectory and Mission Design for the Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) Asteroid Sample Return Mission Mark Beckmana,1, Brent W. Barbeea,2,∗, Bobby G. Williamsb,3, Ken Williamsb,4, Brian Sutterc,5, Kevin Berrya,2 aNASA/GSFC, Code 595, 8800 Greenbelt Road, Greenbelt, MD, 20771, USA bKinetX Aerospace, Inc., 21 W. Easy St., Suite 108, Simi Valley, CA 93065, USA cLockheed Martin Space Systems Company, PO Box 179, Denver CO, 80201, MS S8110, USA Abstract The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016 to rendezvous with near-Earth asteroid (NEA) 101955 (1999 RQ36) in 2018, study it, and return a pristine carbonaceous regolith sample in 2023. This mission to 1999 RQ36 is motivated by the fact that it is one of the most hazardous NEAs currently known in terms of Earth collision probability, and it is also an attractive science target because it is a primitive solar system body and relatively accessible in terms of spacecraft propellant requirements. In this paper we present an overview of the design of the OSIRIS-REx mission with an emphasis on trajectory design and optimization for rendezvous with the asteroid and return to Earth following regolith sample collection. Current results from the OSIRIS-REx Flight Dynamics Team are presented for optimized primary and backup mission launch windows. Keywords: interplanetary trajectory, trajectory optimization, gravity assist, mission design, sample return, asteroid 1. Introduction The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in 2016.
    [Show full text]
  • Dawn Mission to Vesta and Ceres Symbiosis Between Terrestrial Observations and Robotic Exploration
    Earth Moon Planet (2007) 101:65–91 DOI 10.1007/s11038-007-9151-9 Dawn Mission to Vesta and Ceres Symbiosis between Terrestrial Observations and Robotic Exploration C. T. Russell Æ F. Capaccioni Æ A. Coradini Æ M. C. De Sanctis Æ W. C. Feldman Æ R. Jaumann Æ H. U. Keller Æ T. B. McCord Æ L. A. McFadden Æ S. Mottola Æ C. M. Pieters Æ T. H. Prettyman Æ C. A. Raymond Æ M. V. Sykes Æ D. E. Smith Æ M. T. Zuber Received: 21 August 2007 / Accepted: 22 August 2007 / Published online: 14 September 2007 Ó Springer Science+Business Media B.V. 2007 Abstract The initial exploration of any planetary object requires a careful mission design guided by our knowledge of that object as gained by terrestrial observers. This process is very evident in the development of the Dawn mission to the minor planets 1 Ceres and 4 Vesta. This mission was designed to verify the basaltic nature of Vesta inferred both from its reflectance spectrum and from the composition of the howardite, eucrite and diogenite meteorites believed to have originated on Vesta. Hubble Space Telescope observations have determined Vesta’s size and shape, which, together with masses inferred from gravitational perturbations, have provided estimates of its density. These investigations have enabled the Dawn team to choose the appropriate instrumentation and to design its orbital operations at Vesta. Until recently Ceres has remained more of an enigma. Adaptive-optics and HST observations now have provided data from which we can begin C. T. Russell (&) IGPP & ESS, UCLA, Los Angeles, CA 90095-1567, USA e-mail: [email protected] F.
    [Show full text]
  • J. Lee1,2, D.-H. Kim1,2, F. Yoshida3, S.-M
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1497.pdf ROTATIONAL AND SURFACE PROPERTIES OF NEA 3200 PHAETHON. M.-J. Kim1, H.-J. Lee1,2, D.-H. Kim1,2, F. Yoshida3, S.-M. Lee1,2, P. Bartczak4, G. Dudzinski4, J. Park1, Y.-J. Choi1,5, H.-K. Moon1, C.-H. Kim2, H.- S. Yim1, J. Choi1, E.-J. Choi1, J.-N. Yoon6, A. Serebryanskiy7, M. Krugov7, I. Reva7, K. E. Ergashev8, O. Burkhonov8, S. A. Ehgamberdiev8, Y. Turayev8, Z.-Y. Lin9, T. Arai3, K. Ohtsuka10, T. Ito11, S. Urakawa12, M. Ishi- guro13, B.-C. Lee1, D.-G. Roh1, and H.Seo1,14, 1Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea, [email protected], 2Chungbuk National University, 1 Chungdae-ro, Seowon- gu, Cheongju, Chungbuk 28644, Korea, 3Planetary Exploration Research Center, Chiba Institute of Technology, 2- 17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan, 4Astronomical Observatory Institute, Faculty of Physics, Adam Mickiewicz University, Słoneczna 36, 60-286 Poznan, Poland, 5University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea, 6Chungbuk National University Observatory, 802-3 Euntan-ri, Jincheon-gun, Chungcheongbuk-do, Korea, 7Fesenkov Astrophysical Institute, Observatory 23, 050020 Almaty, Ka- zakhstan, 8Ulugh Beg Astronomical Institute of the Uzbekistan Academy of Sciences, 33 Astronomicheskaya str., Tashkent, 100052, Uzbekistan, 9Institute of Astronomy, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City 32001, Taiwan, 10Tokyo Meteor Network, Daisawa 1–27–5, Setagaya-ku, Tokyo 155–0032, Japan, 11National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan, 12Japan Spaceguard Association, Bisei Spaceguard Center, 1716-3 Okura, Bisei-cho, Ibara, Okayama 714-1411, Japan, 13Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea, 14Intelligence in Space, 96 Gajeongbuk- ro, Yuseong-gu, Daejeon, 34111, Korea.
    [Show full text]