The Evolution of Araliaceae: a Phylogenetic Analysis Based on ITS Sequences of Nuclear Ribosomal DNA

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Araliaceae: a Phylogenetic Analysis Based on ITS Sequences of Nuclear Ribosomal DNA View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lincoln University Research Archive Systematic Botany (2001), 26(1): pp. 144±167 q Copyright 2001 by the American Society of Plant Taxonomists The Evolution of Araliaceae: A Phylogenetic Analysis Based on ITS Sequences of Nuclear Ribosomal DNA JUN WEN Department of Biology, Colorado State University, Fort Collins, Colorado 80523 Current address: Department of Botany, Field Museum of Natural History, Roosevelt Rd at Lake Shore Dr., Chicago, Illinois 60605-2496 GREGORY M. PLUNKETT Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284-2012 ANTHONY D. MITCHELL Ecology and Entomology Group, Soil, Plant and Ecological Sciences Division, PO Box 84, Lincoln University, Canterbury, New Zealand STEVEN J. WAGSTAFF Landcare Research, P.O. Box 69, Lincoln 8152, New Zealand Communicating Editor: Alan Whittemore ABSTRACT. Phylogenetic analyses of ITS sequence data from 70 species and 40 genera of Araliaceae (representing all major lineages within the ``core group'' of the family) do not support the widely used traditional division of Araliaceae into three tribes. Tribe Aralieae (characterized by imbricate petals) is found nested within a paraphyletic Schef¯erieae (whose taxa have valvate petals). There are, however, two large monophyletic groups comprising most araliad genera: the ''Aralia-Polyscias-Pseudopanax group'' (which in- cludes Aralia, Meryta, Munroidendron, Panax, Pentapanax, Polyscias, Pseudopanax, Reynoldsia, Sciadodendron, Tetra- plasandra, and their close allies), and the ''Eleutherococcus-Dendropanax-Schef¯era group'' (including Brassaiopsis, Dendropanax, Eleutherococcus, Fatsia, Hedera, Oreopanax, Schef¯era, Sinopanax, and their close allies). The ITS trees also permit a re-evaluation of several taxonomically important morphological characters (e.g., petal aestivation, leaf architecture, carpel number, and habit), and provide the opportunity to assess traditional generic delimitations in the family. Four of the largest genera appear to be either polyphyletic (Schef¯era, Pseudopanax) or paraphyletic (Aralia, Polyscias), but further studies will be needed to fully re-de®ne these complex taxa. Outgroup comparisons and the placement of Astrotricha and Osmoxylon (in basally-branching lineages in Araliaceae) help to con®rm a paleotropical origin of the family. The ITS topologies suggest that biogeographic radiations into different tropical/subtropical regions and into the north and south temperate regions occurred early in the history of core Araliaceae. Temperate taxa have arisen several times indepen- dently from tropical and subtropical relatives, although a few subtropical taxa may be found nested within temperate clades (e.g., Pentapanax within Aralia). Migrations between the Old and New Worlds are also sug- gested for several taxa, including Aralia, Panax, Oplopanax, and the SinopanaxÐOreopanax generic pair. Araliaceae (the ginseng family) comprise approx- traditionally been allied with Apiaceae on the basis imately 55 genera and 1,500 species. The family is of morphological (Harms 1898; Judd et al. 1994) most broadly distributed in the tropics and sub- and anatomical evidence (Metcalfe and Chalk tropics (especially in southeastern and southern 1950), and this treatment has been largely support- Asia and the Paci®c islands), but there are several ed by recent molecular studies (Plunkett et al. well-known genera from the temperate zones as 1996a, 1997). Most systems of classi®cation place well (e.g., Aralia, Hedera, Oplopanax, and Panax). The Araliaceae and Apiaceae together in the order Api- family includes a number of important medicinal ales (sensu Cronquist 1981, 1988; or its taxonomic plants, such as Panax (ginseng) and Eleutherococcus equivalent, Thorne 1992; Takhtajan 1987, 1997), (Siberian ginseng), and several well-known orna- which in turn has been placed in or near subclass mentals, including Hedera (English ivy), Schef¯era Rosidae (e.g., Cronquist 1981, 1988). Recent studies, (the umbrella trees), and Polyscias. Araliaceae have however, suggest that Apiales should be placed in 144 2001] WEN ET AL.: ARALIACEAE EVOLUTION 145 a broadly de®ned Asteridae (Chase et al. 1993; later workers as ``arti®cial'' due to its heavy reliance Olmstead et al. 1993; Plunkett et al. 1996a; Soltis et on in¯orescence characters (see Hoo and Tseng al. 1997) closely allied to Pittosporaceae (Plunkett 1978; Frodin 1982; Tseng and Hoo 1982; Wen 1991, et al. 1996a, 1997; Xiang and Soltis 1998). 1993; Wen et al. 1998). In fact, in¯orescence struc- Araliaceae are characterized by relatively con- ture may be variable within a single genus (e.g., served ¯oral, but diverse vegetative features (Phi- Aralia, Wen 1991, 1993; Schef¯era, Frodin 1982) or lipson 1970a; Eyde and Tseng 1971). Members of even within a single section (e.g., Aralia sect. Aralia, the family possess ®ve sepals, 5±10 (±12) petals, Wen et al. 1998). Tseng and Hoo (1982) proposed a which are free or form a calyptra (as in Pentapanax system of ®ve tribes: Aralieae, Panaceae, Pleran- and Tupidanthus), mostly 5±10 stamens (rarely to dreae, Tetraplasandreae, and Mackinlayeae. Their numerous, e.g., 120 in Tupidanthus), and a gynoeci- system is largely a re®nement of Harms' (1898) um with 2±10 (mostly 5, rarely up to 200 in Tupi- treatment with a greater emphasis on leaf architec- danthus, or1inSeemannaralia R. Viguier) locules, ture. They divided Harms' Aralieae into two tribes: and an inferior ovary (rarely superior as in Dipanax Aralieae s. str., with leaves once to several-times Seem.) with a nectary disk. Most araliads produce pinnately compound, and Panaceae, with simple or berries or drupaceous fruits that are bird dispersed palmately compound leaves. They also divided (Ridley 1930). The leaves of Araliaceae vary from Harms' Schef¯ereae into Plerandreae (with simple simple, to variously lobed or divided, to palmately or palmately compound leaves) and Tetraplasan- and/or pinnately compound. Although most spe- dreae (with pinnately compound leaves). cies are trees, shrubs, or woody climbers, there are Although Araliaceae lack a modern systematic also a few herbaceous perennials (e.g., some species treatment, data are available from a wide range of of Aralia and Panax). taxonomic sources. Floristic studies have helped to The major classi®cation systems of Araliaceae in- enumerate the species of Araliaceae from many re- clude those by Bentham and Hooker (1867), See- gions [e.g., China (Franchet 1896; Li 1942; Hoo and mann (1868), Harms (1898), Hutchinson (1967), and Tseng 1978; Shang 1985a), East Africa (Tennant Tseng and Hoo (1982). Bentham (1867) recognized 1968), Europe (Webb 1968; Stace 1993), Hawaii ®ve ``series'' (5 tribes) within Araliaceae based on (Lowry 1986), Japan (Ohwi 1984), Korea (Lee 1993), petal aestivation (imbricate vs. valvate), pedicel Malesia (i.e., Indonesia, Malaysia, and the Philip- type (articulate vs. continuous), breeding system pines, Philipson 1979), New Zealand (Allan 1961), (hermaphrodite, polygamo-dioecious, or dioecious), North America (Smith 1944), the former U.S.S.R. stamen number, and albumen type (ruminate vs. (Poyarkova 1973), and Vietnam (Ha 1974; Hoà uniform). Seemann (1868) de®ned the segregate 1993)]. Further, revisionary treatments have been ``order'' (5 family) Hederaceae as distinct from a completed for several genera [e.g., Aralia (Wen more narrowly circumscribed Araliaceae. His Hed- 1991), Delarbrea (Lowry 1986), Eleutherococcus (Kim eraceae was divided into ®ve tribes (Cussonieae, 1997), Macropanax (Shang 1983), and Schef¯era (Fro- Hors®eldieae, Hedereae, Pseudopanaceae, and Pler- din 1975, 1986, 1989; Shang 1984)], and phyloge- andreae), and included all araliads having valvate netic analyses have also been performed for Aralia petals and fruits with two or more carpels. As such, (Wen 1991; Tseng et al. 1993; Wen et al. 1996; Wen it included the vast majority of araliaceous genera, et al. 1998; Wen 1999b), Eleutheroccocus (Kim 1997), excluding only genera with imbricate petals (e.g., Hedera (Vargas 1999), Panax (Wen and Zimmer Aralia and Panax). Harms' (1898) treatment, which 1996), and Pseudopanax (Mitchell and Wagstaff remains the most widely used (e.g., in Poyarkova 1997). Cytological work has demonstrated that a ba- 1973; Hoo and Tseng 1978; Philipson 1979; Shang sic chromosome number of x 5 12 is highly con- 1985a; Mabberly 1997), divides Araliaceae into served throughout the family, with diploid num- three tribes (Aralieae, Mackinlayeae, and Schef¯er- bers mostly of 2n 5 24 or 2n 5 48 (Matsuura and eae) based largely on petal aestivation. Most araliad Suto 1935; Sugiura 1936; Rattenbury 1957; Harn genera, having valvate petals, were placed in tribe and Whang 1963; Graham 1966; LoÈve and Ritchie Schef¯ereae (36 genera), leaving relatively few gen- 1966; Sokolovskaya 1966; Wardle 1968; Stone and era in tribes Aralieae (11 genera) and Mackinlayeae Loo 1969; Hara 1970; Guha 1971; Javurkova 1981; (three genera) (see Table 1). Hutchinson (1967) rec- Yang 1981; LoÈve and LoÈve 1982; Beuzenberg and ognized seven tribes (Cussonieae, Anomopanaceae, Hair 1983; Starodubtsev 1985; Sun et al. 1988); Plerandreae, Aralieae, Mackinlayeae, Panaceae, and some taxa from Hedera, however, have a diploid Hedereae), but his system was widely criticized by number as high as 2n 5 192 (Stace 1993; Vargas 146 SYSTEMATIC BOTANY [Volume 26 TABLE 1. The classi®cation of Araliaceae according to Harms (1898). Modern synonymies are noted
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Northern Beaches 2019 June Caleyi
    p CALEYI i c A n d r e P o r t e n e r s NORTHERN BEACHES G R O U P austplants.com.au/northern-beaches June 2019 Australian Plants Society Northern Beaches APS NORTHERN BEACHES MAY MEETING [email protected] Anne Gray President Dr Conny Harris 9451 3231 At our May meeting Eleanor continued our education on Plant Families by Vice-President David Drage 9949 5179 presenting the Araliaceae Family. Secretary Penny Hunstead 9999 1847 Minutes Secretary Eleanor Eakins 9451 1883 This family is made up of 52 genera and 700 species worldwide. Eleanor Treasurer Lindy Monson 9953 7498 looked at the Astrotricha (star-hair) genus which is found in the Sydney area Regiona Delegate Harry Loots 9953 7498 and is closely related to the Apiaceae Family (flannel flowers). The plants Librarian Jennifer McLean 9970 6528 usually have star hairs on most parts of theAsplenium plant except obtusatum. the pic:Richard upper surface Hunstead of Website Administrator David Drage 9949 5179 the mature leaf. Membership Officer Jan Carnes 0416 101 327 Talk Co-ordinator Russell Beardmore 0404 023 223 Walk Co-ordinator Anne Gray 9402 4797 Catering Officer Georgine Jakobi 9981 7471 Newsletter Editor Jane March 0407 220 380 CALENDAR APS Northern Beaches meeting Thursday June 6, 2019 at Stony Range Botanic Garden, Dee Why. 7.00 pm Plant family. Campanulaceae - Estelle Burrows. 7.15 pm Presentation: Katriona Wragg: NBC Community Nursery Supervisor. Growing A Community Native Plant Nursery. Northern Beaches Council Community Native Plant Nursery started in 2009 and produced less than 1000 plants.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Bulletin of Natural History ®
    FLORI'IDA MUSEUM BULLETIN OF NATURAL HISTORY ® A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE DavidL. Dilcher and Terry A. Lott Vol. 45, No. 1, pp. 1-43 2005 UNIVERSITY OF FLORIDA GAINESVILLE - The FLORIDA MUSEUM OF NATURAL HiSTORY is Florida«'s state museum of natural history, dedicated to understanding, preser¥ingrand interpreting].biologica[1 diversity and culturafheritage. The BULLETIN OF THE FLORIDA- MUSEUM OF NATURAL HISTORY is a peer-reviewed publication thatpziblishes.the result5 of origifial reseafchin zodlogy, botany, paleontology, and archaeology. Address all inquiries t6 the Managing Editor ofthe Bulletin. Numbers,ofthe Bulletin,afe,published,at itregular intervals. Specific volumes are not'necessarily completed in anyone year. The end of a volume willl·be noted at the foot of the first page ofthe last issue in that volume. Richard Franz, Managing Editor Erika H. Simons, Production BulletinCommittee Richard Franz,,Chairperson Ann Cordell Sarah Fazenbaker Richard Hulbert WilliamMarquardt Susan Milbrath Irvy R. Quitmyer - Scott Robinson, Ex 01#cio Afember ISSN: 0071-6154 Publication Date: October 31,2005 Send communications concerning purchase or exchange of the publication and manustfipt queries to: Managing Editor of the BULLETIN Florida MuseumofNatural-History University offlorida PO Box 117800 Gainesville, FL 32611 -7800 U.S.A. Phone: 352-392-1721 Fax: 352-846-0287 e-mail: [email protected] A MIDDLE EOCENE FOSSIL PLANT ASSEMBLAGE (POWERS CLAY PIT) FROM WESTERN TENNESSEE David L. Dilcher and Terry A. Lottl ABSTRACT Plant megafossils are described, illustrated and discussed from Powers Clay Pit, occurring in the middle Eocene, Claiborne Group of the Mississippi Embayment in western Tennessee.
    [Show full text]
  • Recovery Plan for Tyoj5llllt . I-Bland Plants
    Recovery Plan for tYOJ5llllt. i-bland Plants RECOVERY PLAN FOR MULTI-ISLAND PLANTS Published by U.S. Fish and Wildlife Service Portland, Oregon Approved: Date: / / As the Nation’s principal conservation agency, the Department of the Interior has responsibility for most ofour nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values ofour national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests ofall our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island Territories under U.S. administration. DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Costs indicated for task implementation and/or time for achievement ofrecovery are only estimates and are subject to change. Recovery plans do not necessarily represent the views nor the official positions or approval ofany individuals or agencies involved in the plan formulation, otherthan the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S.
    [Show full text]
  • Global Research on Ultramafic (Serpentine) Ecosystems
    van der Ent, et al. 2015. Published in Australian Journal of Botany. 63:1-16. Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis A,E,H B,C D E Antony van der Ent , Nishanta Rajakaruna , Robert Boyd , Guillaume Echevarria , Rimi RepinF and Dick WilliamsG ACentre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Qld, Australia. BCollege of the Atlantic, 105 Eden Street, ME 04609, USA. CEnvironmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa. DDepartment of Biological Sciences, 101 Rouse Life Sciences Bldg, Auburn University, AL 36849, USA. ELaboratoire Sols et Environnement, UMR 1120, Université de Lorraine – INRA, France. FSabah Parks, KK Times Square, Coastal Highway, 88100 Kota Kinabalu, Malaysia. GAustralian Journal of Botany, CSIRO Tropical Ecosystems Research Centre, Australia. HCorresponding author. Email: [email protected] Abstract. Since 1991, researchers from approximately 45 nations have participated in eight International Conferences on Serpentine Ecology (ICSE). The Conferences are coordinated by the International Serpentine Ecology Society (ISES), a formal research society whose members study geological, pedological, biological and applied aspects of ultramafic (serpentine) ecosystems worldwide. These conferences have provided an international forum to discuss and synthesise multidisciplinary research, and have provided opportunities for scientists in distinct fields and from different regions of the world to conduct collaborative and interdisciplinary research. The 8th ICSE was hosted by Sabah Parks in Malaysia, on the island of Borneo, and attracted the largest delegation to date, 174 participants from 31 countries. This was the first time an ICSE was held in Asia, a region that hosts some of the world’s most biodiverse ultramafic ecosystems.
    [Show full text]
  • Polyscias Pinnata1
    Fact Sheet FPS-489 October, 1999 Polyscias pinnata1 Edward F. Gilman2 Introduction Balfour Aralia is usually seen in its variegated form of glossy, light green leaves with irregular milk-white markings at its margins (Fig. 1). The stiffly upright growth habit, comprised of many stems, works well as a hedge or screen, or as a specimen. It grows nicely in a container for patio or terrace. The plant may thin out at the bottom as it grows older. Prune several of the older stems to the ground to encourage thicker foliage near the base. General Information Scientific name: Polyscias pinnata Pronunciation: poe-LISS-see-us pin-NAY-tuh Common name(s): Balfour Aralia Family: Araliaceae Plant type: shrub USDA hardiness zones: 10B through 11 (Fig. 2) Planting month for zone 10 and 11: year round Origin: not native to North America Uses: hedge; specimen; foundation; border; accent; cut Figure 1. Balfour Aralia. foliage/twigs; suitable for growing indoors Availablity: generally available in many areas within its Growth rate: slow hardiness range Texture: fine Description Foliage Height: 6 to 10 feet Spread: 2 to 4 feet Leaf arrangement: alternate Plant habit: round Leaf type: trifoliate Plant density: dense Leaf margin: dentate 1.This document is Fact Sheet FPS-489, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611.
    [Show full text]
  • Title General Flowering in an Asesonal Tropical Forest : Plant Reproductive Phenology and Plant-Pollinator Interactions in A
    General flowering in an asesonal tropical forest : plant Title reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak( Dissertation_全文 ) Author(s) Sakai, Shoko Citation 京都大学 Issue Date 1999-03-23 URL https://doi.org/10.11501/3149376 Right Type Thesis or Dissertation Textversion author Kyoto University Shoko Sakai 1 Doctoral thesis General flowering in an aseasonal tropical forest: plant reproductive phenology and plant-pollinator interactions in a lowland dipterocarp forest in Sarawak i1-:;r"J'Ji~tt!3"79 1 \t5-:t:t-*1=d=311 ~f®~m~9m"7 I .J o 9-c f@~7ll-~fJJ~t§B:fJ=f§ Shoko SAKAI Fuculty of Science, Kyoto University March 1999 Shoko Sakai 2 CONTENTS Summary 4 Chapter 1. Introduction 6 Chapter 2. Canopy observation system 11 Chapter 3. Plant reproductive phenology 16 Chapter 4. Pollination system in a general flowering period 56 Chapter 5. General discussion 77 Acknowledgments 88 Reference 89 Appendix 99 Shoko Sakai 3 Jttm 7:; 7 ~m~f~:lt!!. 7 7 ;\ tf .:t-w-r: I±, - =for oo:rE e: Df'Jn ~ :m~-IJ\jo G n -c \,t) ~ o -=for 001£ C: I±, 2-10 ifmJM-r:w7Ct ~ f~hX:T ~ :f*4 ~f!Hi-/J\~7 JJ ~Fa, ~:.:J(4 C: 001£ · ~~T ~ ;m~ -r:~ ~ o -: ~:m~ ~~~~ t-:=&IJ, 1992ifiJ" G? v- Y 7 · -IT 7 r:7 71+1 · 7 / ~-Jv00J1.0~ ~=13 v)-c, JE:M89~: 305{i576f~1*~til!fo/J~001E · fffl~15th~~c&~l .. 53'-;fJl-~13-:~-:>t-:= o i-~~ :lf!;, 1992if-IJ"G 19951f:i-r:'±~1tjt~~til!fo/J~~ ~~OO:rEL-cv)~{i, ~~v)l±f~i*~~Uil '±~~: 2-5% C: 1~-/J"-:> t-:=-/J\, f-~~Ui!L± 19961f: 3 JJ iJ" Gf&,Jt~:_t~ L-c 20% ~=~ l, - =foTOO 1E ~ ~c&~ L t-:= o 001E~Uil~ ~1tL± 5 JJ C: 9 Jn: I!- 7 ~ ~--:::> =L1J ~ ~ L t-:: o it-::, - =for 001£ L± 70 ;~-- r Jv ~-: -t~tH*n" G*f'*f~*-?~~ 7 / i -r:~l*~til!fo/J-/J\--:::> < ~ te-t:m~t! e: v) ~-: (: -/)\ b -/)'> -:> t-:= 0 7 7 ;\if .:t- W~fil!fo/J I± i- ~ Li C: lv C:"-/J\j}J!fo/J ~: ~~' ~ {t(fF L-c v) ~ ~ -r:, - =for OO:f£-/J\13-: ~ C:~f;t~~11ff~-/J\f&,~=r'§J < ~~ 0 ttg:I±1Eit?]Jjt~z Lv)w-r:-=foT001E~~~m-~T- ~AiJ\C:"~ J:: ~ 1: 1 iJ" ~ b n -c \,t) ~ ~ iJ"I±, -=for oo:rE ~ &~J <" ~ * ~ ~ rQ~m~ ---:::> -c- ~ ~ o -: n 1 -r: .
    [Show full text]
  • Tetrapanax Papyrifer SCORE: 12.0 RATING: High Risk (Hook.) K
    TAXON: Tetrapanax papyrifer SCORE: 12.0 RATING: High Risk (Hook.) K. Koch Taxon: Tetrapanax papyrifer (Hook.) K. Koch Family: Araliaceae Common Name(s): Chinese rice paper-plant Synonym(s): Aralia papyrifera Hook. rice paper plant Assessor: Chuck Chimera Status: Assessor Approved End Date: 10 Oct 2018 WRA Score: 12.0 Designation: H(HPWRA) Rating: High Risk Keywords: Naturalized Shrub, Environmental Weed, Allergenic, Dense Stands, Suckers Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) y 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 y 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Creation Date: 10 Oct 2018 (Tetrapanax papyrifer Page 1 of 16 (Hook.) K.
    [Show full text]
  • (Araliaceae Juss.) Ở Việt Nam
    TIỂU BAN KHU HỆ ĐỘNG VẬT - THỰC VẬT LỰA CHỌN HỆ THỐNG PHÂN LOẠI ĐỂ SẮP XẾP CÁC CHI HỌ NGŨ GIA BÌ (ARALIACEAE JUSS.) Ở VIỆT NAM Nguyễn Văn Đạt1, Vũ Tiến Chính1,3, Trần Thị Phƣơng Anh1,3, Lê Thị Liên2, Hoàng Lê Tuấn Anh2 1Bảo tàng Thiên nhiên Việt Nam Viện Hàn lâm Khoa học và Công nghệ Việt Nam 2Viện nghiên cứu khoa học miền Trung Viện Hàn lâm Khoa học và Công nghệ Việt Nam 3Học viện Khoa học và C ng nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam Họ Nhân sâm hay Ngũ gia bì - Araliaceae Juss. có khoảng 50 chi, 1350 loài phổ biến ở vùng nhiệt đới và cận nhiệt đới, ít khi có ở vùng ôn đới [11]. Ở nƣớc ta, theo Phạm Hoàng Hộ, họ này có khoảng 19 chi và hơn 120 loài, phân bố rải rác khắp cả nƣớc [6]. Các công trình nghiên cứu về phân loại họ Ngũ gia bì ở Việt Nam quan trọng nhất phải kể đến là F. Ganepain (1923) [4] đã mô tả và lập khóa định loại của 12 chi ở Đông Dƣơng trong đó có 10 chi có ở Việt Nam. Kể từ đó đến nay, nhiều tác giả khác đã có những công trình nghiên cứu sâu về họ nhƣ Phạm Hoàng Hộ (2000), Grushvitky et al. (1996), Nguyễn Tiến Bân (2003), tuy nhiên cho đến nay số lƣợng chi và loài đã có nhiều thay đổi…. Từ trƣớc đến nay chƣa có công trình nào nghiên cứu hệ thống để sắp xếp các taxon họ Araliaceae ở Việt Nam, Bài báo này giới thiệu một số hệ thống trên thế giới và lựa chọn hệ thống để sắp xếp các chi trong họ Araliaceae ở Việt Nam.
    [Show full text]
  • Araliaceae – Ginseng Family
    ARALIACEAE – GINSENG FAMILY Plant: some herbs (perennial), woody vines, shrubs and trees Stem: usually pithy Root: sometimes with rhizomes Leaves: simple or palmately compound but rarely 2’s or 3’s, often thickened and large, mostly alternate (rarely opposite or whorled); usually with stipules that forms a stem sheath; often with star-shaped hairs Flowers: mostly perfect or unisexual (monoecious or dioecious), regular (actinomorphic); flowers very small, mostly in umbels; sepals 5, often forming small teeth or none, mostly 5(-10) petals; mostly 5(-10) stamens; ovary inferior, 2-5 (10) fused carpels Fruit: berry or drupe, oily Other: mostly tropical and subtropical, a few oranamentals; similar to Apiaceae; Dicotyledons Group Genera: 70+ genera; locally Aralia (spikenard), Hedera (English Ivy), Oplopanax, Panax (ginseng) WARNING – family descriptions are only a layman’s guide and should not be used as definitive Araliaceae (Ginseng Family) – 5 (mostly) sepals and petals (often 5-lobed), often in umbels or compound umbels; leaves simple or more often compound; fruit a berry or drupe Examples of common genera Devil's Walkingstick [Hercules’ Club] Wild Sarsaparilla Aralia spinosa L. Aralia nudicaulis L. Devil's Club [Devil’s Walking Stick; Alaskan Ginseng] Oplopanax horridus (Sm.) Miq. English Ivy Hedera helix L. (Introduced) Dwarf Ginseng Panax trifolius L. ARALIACEAE – GINSENG FAMILY Wild Sarsaparilla; Aralia nudicaulis L. Devil's Walkingstick [Hercules’ Club]; Aralia spinosa L. English Ivy; Hedera helix L. (Introduced) Devil's Club [Devil’s
    [Show full text]