Solanum Hirtum As a Host Plant for Mechanitis Menapis Menapis (Lepidoptera: Ithomiinae) in Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Solanum Hirtum As a Host Plant for Mechanitis Menapis Menapis (Lepidoptera: Ithomiinae) in Colombia Revista Colombiana de Entomología 36 (1): 169-171 (2010) 169 Solanum hirtum as a host plant for Mechanitis menapis menapis (Lepidoptera: Ithomiinae) in Colombia Solanum hirtum como planta hospedera de Mechanitis menapis menapis (Lepidoptera: Ithomiinae) en Colombia. CARLOS EDUARDO GIRALDO S.1 y SANDRA I. URIBE S.2 Abstract: Specimens of Mechanitis menapis menapis (Lepidoptera: Nymphalidae: Ithomiinae) were collected from three localities in the Colombian Andes. Eggs and larvae found on the host plant were collected and studied under laboratory conditions. The plant on which the immatures were found was identified as Solanum hirtum, which rep- resents a new host plant record for Mechanitis menapis in Colombia. The observations presented contribute to an understanding of the host plants of Neotropical diurnal butterflies, and specifically the Ithomiinae, for Colombia. Key words: Solanaceae. Life cycle. Resumen: Especímenes de Mechanitis menapis menapis (Lepidoptera: Nymphalidae: Ithomiinae) se recolectaron en tres localidades de los Andes colombianos. Huevos y larvas encontrados en la planta hospedera se recolectaron y estudiaron en condiciones de laboratorio. La planta sobre la cual se encontraron los inmaduros fue identificada como Solanum hirtum hallazgo que constituye un nuevo registro de planta hospedera para Mechanitis menapis en Colom- bia. Las observaciones presentadas contribuyen al conocimiento de las plantas hospederas de las mariposas diurnas Neotropicales y en particular de Ithomiinae para Colombia. Palabras clave: Solanaceae. Ciclo de vida. Introduction lacking on relevant characters as derived from immature in- stars, and aspects such as host plant range and life cycle detail. Mechanitis menapis menapis (Hewitson, 1856) belongs to Regarding his work, Brown (1977) stated: “it is not claimed the family Nymphalidae, subfamily Ithomiinae. This sub- that this represents a final taxonomic revision, as much field, family includes Neotropical butterflies distributed in humid insectary, genetic, cytological, physiological and biochemi- forests from sea level up to 3.000 m and from Mexico to cal work must still be undertaken before a complete and de- southern Brazil, Paraguay, and across three Caribbean is- finitive comprehension of these groups can be achieved.” lands (Willmott and Freitas 2006). Ithomiinae species are Interactions between Ithomiinae butterflies and Solanace- of special interest as entomological and ecological models ae plants have been well documented (Drummond and Brown because they belong to at least eight distinct mimicry rings 1987, 1999; Willmott and Mallet 2004). Records of Mechani- (Joron and Mallet 1998) and because they establish particular tis larvae feeding on Solanum plants have been reported in relationships with host plants, most of which produce alka- Brazil, Costa Rica and Colombia (Vasconcellos-Neto 1986; loids that are detoxified during the caterpillar life cycle and Acevedo 1992; Constantino 1997a; Haber 2001). According later used as defenses against natural enemies (Drummond to Willmott and Mallet (2004), and based on an extensive and Brown 1987). Important advances improving the knowl- compilation from different authors, there are more than 35 edge of Ithomiinae in South America have been recently pub- Solanum host plants registered for Mechanitis species. As an lished (e.g. Drummond and Brown 1987, 1999; Willmott and example, M. lysimnia (Fabricius, 1793) females have been Mallet 2004; Willmott and Freitas 2006). In Colombia, some observed laying eggs on the leaves of at least five prickly publications including host plants records have been made by Solanum species in southeast of Brazil (Vasconcellos-Neto Constantino (1997a, 1997b) and García et al. (2002), but de- and Monteiro 1993). In Colombia, Constantino (1997a), re- tailed studies related to host plants and life cycle are scarce. corded M. polymnia (Linnaeus, 1758) feeding on S. torvum The genus Mechanitis has been recorded in the Colom- (Sw., 1788) and S. quitoense (Lam., 1794) and M. menapis on bian Andes particularly in coffee growing areas of Antioquia S. torvum, S. hispidum (S. asperolanatum Ruiz & Pav., 1799), and Caldas departments (Constantino 1997a). The genus is S. nigrum (L., 1753) and S. mammosum (S. circinatum Bohs, taxonomically difficult and identification to the species level 1995). is mainly achieved using morphological characters such as The high diversity of the genus Solanum, estimated at wing color pattern and venation. Variation in color pattern approximately 1400 species (Bosh 2005) with 163 restricted among some species and subspecies, however, makes identi- to Colombia (NHM 2008), and the morphological similarity fication difficult (Brown 1977). Brown (1977) reviewed the between species, have contributed to a poor understanding of taxonomy of Mechanitis and Melinaea, but studies are still Solanum host plants for Ithomiinae in Colombia, including 1 Ingeniero Agrónomo, candidato a Maestría en Biología Universidad de Antioquia, Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, sede Medellín. Correspondencia: Calle 59A No 63-20. Bloque 18-102 Universidad Nacional de Colombia sede Medellín. [email protected]. Autor para correspondencia. 2 Ingeniera Agrónoma, M. Sc., Ph. D. Profesora asociada Facultad de Ciencias, Universidad Nacional de Colombia sede Medellín, Grupo de Investigación en Sistemática Molecular. Calle 59A No 63-20. Bloque 18-102 Medellín, Colombia. 170 Revista Colombiana de Entomología Carlos Eduardo Giraldo S. y Sandra I. Uribe S. for Mechanitis. In this work we report Solanum hirtum Vahl. Results and Discussion as a host plant for M. menapis menapis in Colombia. Plant samples where immature stages of Mechanitis were Materials and Methods found and reared corresponded to S. hirtum (Fig. 1A). S. hir- tum is distributed from Peru to Central America (Bohs 2005) Biological material was obtained during fieldwork from and was previously reported as a host plant for M. isthmia (M. three localities in the Andean region of Colombia. Santa Fé polymnia isthmia H. W. Bates, 1863) by Rathcke and Poole de Antioquia (500 m elevation, 6°32’08,19” N, 75°49’41,32” (1975) and Drummond and Brown (1987) in Venezuela. In W) Valparaiso Antioquia (1000 m elevation 5°41’32,86”N, Colombia, it has not previously been reported as a host plant 75°38’24,14”W), and Anserma Caldas (840 m elevation for Mechanitis. 5°10’35,01”N, 75°40’51,84”W). Eggs and larvae were col- The life cycle from egg to adult lasted 30 days with five lected from plant leaves and plant samples were taken for instars exhibited. In the field, the eggs were found distributed the later taxonomic identification. Plants were identified us- individually or in small clusters (Fig. 1B), usually on the up- ing Whalen et al. (1981) and Bohs (2005) and by comparison per leaf surface of young plants <1 m tall. A total of 109 eggs with specimens deposited at the Herbarium MEDEL, Uni- were collected and reared of which 63 reached adult stage versidad Nacional de Colombia, Medellín. Species identities (57.8%). Of these, 33 were males (52.38%) and 30 were fe- were confirmed by an expert of theSolanum genus, Dr. Lynn males (47.62%). Bosh. Voucher specimens were deposited in the Herbarium After hatching, first instars ate a part of the egg shell and MEDEL. a small part of the leaf, making a hole through which they Immature stages were reared under laboratory conditions passed to the inner leaf surface. They then weaved a web on in the insectarium at the Universidad Nacional de Colom- the leaf’s stellate trichomes on which they were able to move. bia, Medellín (1538 m elevation, 27°C and 45% humidity). According to Rathcke and Poole (1975), such behavior in M. Selected branches with eggs or larvae were taken from the isthmia (M. polymnia isthmia) is an adaptation for feeding plants and transported to the insectarium. There, each stem on Solanum plants. Larvae begin to eat at the edge of the was hydrated with water and put into a cage made of wood same hole they passed through before to fed on the upper leaf and mesh (20 X 30 X 29 cm). Branches were replaced after surface. First instars have a black cephalic capsule. The body larvae consumed them. Length and width measurements of is clear before eating and then turns dark green due to food. the larvae were taken after each molt. Insects remained in the They have eight pairs of almost imperceptible, undeveloped, cages until eclosion of the imago. Adult butterflies obtained lateral tubercles above the prolegs. Their thoracic legs and were mounted and deposited at the Entomological Museum prolegs are white. The body is 3 mm long and 0.7 mm wide Francisco Luis Gallego (MEFLG) of the Universidad Nacio- after eclosion (Fig. 1C). One day later, the legs are black and nal de Colombia, Medellin. Adults were sexed and identi- prolegs are white; the body is 5 mm long and 0.7 mm wide. fied using morphological characters and field guides (Brown Second instars are 7 mm long and 2.0 mm wide; their 1977; García et al. 2002). Species identities were also con- lateral tubercles are white and larger (0,5 mm). The cephalic firmed by Gerardo Lamas (Museum of Natural History, Uni- capsule is black and the body is grey from the head until the versidad Nacional Mayor de San Marcos). sixth abdominal segment. The other segments are white. Pro- legs are grey. Third instars are 18 mm long and 2.5 mm wide. A B C D E F Figure 1. A. Solanum hirtum B. Eggs C. first instar larvae eclosion. D. Fifth instar larvae. E. Pupae, F. Male adult dorsal view (Left) and ventral view (Right). Planta hospedante de Mechanitis menapis 171 The cephalic capsule and body are grey, but the central part Cited literature and bases of the tubercles are yellow. For this instar, abdomi- nal tubercles are well developed (1 mm). Posterior instars ACEVEDO, E. 1992. Reconocimiento de plagas y benéficos en el (fourth) have similar coloration but are different in size (21 cultivo de tomate de árbol (Cyphomandra betacea (Cav.) en la x 3.0 mm; tubercles 2 mm).
Recommended publications
  • Redalyc.Comparación De Dos Métodos De Extracción De ADN A
    Revista Colombiana de Biotecnología ISSN: 0123-3475 [email protected] Universidad Nacional de Colombia Colombia Cadavid Sánchez, Isabel Cristina; Rosero García, Doris Amanda; Uribe Soto, Sandra Inés Comparación de dos métodos de extracción de ADN a partir de plantas del género Solanum, subgénero Leptostemonum Revista Colombiana de Biotecnología, vol. XV, núm. 2, diciembre, 2013, pp. 186-192 Universidad Nacional de Colombia Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=77629802021 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ARTÍCULO CORTO Comparación de dos métodos de extracción de ADN a partir de plantas del género Solanum, subgénero Leptostemonum Comparison of two ADN extraction methods from plants belonging Solanum genus Leptostemonum subgenus. Isabel Cristina Cadavid Sánchez*, Doris Amanda Rosero García*, Sandra Inés Uribe Soto* Resumen Se evaluaron dos métodos para la extracción de ADN en plantas del género Solanum, con el fin de obtener ADN disponible y de buena calidad para la obtención de secuencias. El producto comercial DNeasy® Plant Mini Kit se comparó con un método que incluye el uso de una solución tampón de lisis. Para este último método también se evaluó si el rendimiento mejoraba cuando las muestras se maceraron previamente con nitrógeno líquido. Los resultados en términos de calidad (A260/A280) no mostraron diferencias significativas entre los métodos de extracción (índice < 1,5). Sin embargo, se encon- traron diferencias en la concentración de ADN obtenida (prueba de Dunnet, p<0,05) y en los porcentajes de amplificación mediante PCR (X2, p<0,05).
    [Show full text]
  • INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
    ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala.
    [Show full text]
  • Butterflies (Lepidoptera: Papilionoidea) in a Coastal Plain Area in the State of Paraná, Brazil
    62 TROP. LEPID. RES., 26(2): 62-67, 2016 LEVISKI ET AL.: Butterflies in Paraná Butterflies (Lepidoptera: Papilionoidea) in a coastal plain area in the state of Paraná, Brazil Gabriela Lourenço Leviski¹*, Luziany Queiroz-Santos¹, Ricardo Russo Siewert¹, Lucy Mila Garcia Salik¹, Mirna Martins Casagrande¹ and Olaf Hermann Hendrik Mielke¹ ¹ Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19.020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: E-mail: [email protected]٭ Abstract: The coastal plain environments of southern Brazil are neglected and poorly represented in Conservation Units. In view of the importance of sampling these areas, the present study conducted the first butterfly inventory of a coastal area in the state of Paraná. Samples were taken in the Floresta Estadual do Palmito, from February 2014 through January 2015, using insect nets and traps for fruit-feeding butterfly species. A total of 200 species were recorded, in the families Hesperiidae (77), Nymphalidae (73), Riodinidae (20), Lycaenidae (19), Pieridae (7) and Papilionidae (4). Particularly notable records included the rare and vulnerable Pseudotinea hemis (Schaus, 1927), representing the lowest elevation record for this species, and Temenis huebneri korallion Fruhstorfer, 1912, a new record for Paraná. These results reinforce the need to direct sampling efforts to poorly inventoried areas, to increase knowledge of the distribution and occurrence patterns of butterflies in Brazil. Key words: Atlantic Forest, Biodiversity, conservation, inventory, species richness. INTRODUCTION the importance of inventories to knowledge of the fauna and its conservation, the present study inventoried the species of Faunal inventories are important for providing knowledge butterflies of the Floresta Estadual do Palmito.
    [Show full text]
  • Life History and Biology of Forbestra Olivencia (Bates, 1862) (Nymphalidae, Ithomiinae)
    VOLUME 60, NUMBER 4 203 Journal of the Lepidopterists’ Society 60(4), 2006, 203–210 LIFE HISTORY AND BIOLOGY OF FORBESTRA OLIVENCIA (BATES, 1862) (NYMPHALIDAE, ITHOMIINAE) RYAN I. HILL 3060 Valley Life Sciences Building, Department of Integrative Biology, University of California, Berkeley, CA 94720 email: [email protected] ABSTRACT. Forbestra is the only mechanitine genus lacking a thorough life history description and little is known of its biology. Accord- ingly I describe the immature stages including first instar chaetotaxy, and provide observations on the biology of Forbestra olivencia from Garza Cocha in eastern Ecuador. Morphological characters from the early stages of Forbestra olivencia are identified that are unique to Forbestra and support the close relationship of Forbestra and Mechanitis. Forbestra olivencia was a moderately common butterfly at Garza Cocha during the sample period, far outnumbering other sympatric Forbestra. Ecological observations demonstrate similarities between F. olivencia and Mechanitis, but suggest F. olivencia is more restricted to shaded microhabitats. Additional key words: Mechanitini, Mechanitis, chaetotaxy INTRODUCTION MATERIALS AND METHODS Ithomiine butterflies have played an important role in Observations were made intermittently between the development of mimicry theory, having been the 2000-2005 at Garza Cocha (S 00°29.87', W 76°22.45'), original models of imitation described by Bates (1862). Provincia Sucumbios, Ecuador. Early stages were In that paper Henry Bates described Mechanitis reared in plastic cups and plastic bags under ambient olivencia based on wing color pattern differences being conditions (22-30° C, 70-100% relative humidity) in a consistently different from other sympatric Mechanitis wood building with screen windows.
    [Show full text]
  • Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED
    Peña & Bennett: Annona Arthropods 329 ARTHROPODS ASSOCIATED WITH ANNONA SPP. IN THE NEOTROPICS J. E. PEÑA1 AND F. D. BENNETT2 1University of Florida, Tropical Research and Education Center, 18905 S.W. 280th Street, Homestead, FL 33031 2University of Florida, Department of Entomology and Nematology, 970 Hull Road, Gainesville, FL 32611 ABSTRACT Two hundred and ninety-six species of arthropods are associated with Annona spp. The genus Bephratelloides (Hymenoptera: Eurytomidae) and the species Cerconota anonella (Sepp) (Lepidoptera: Oecophoridae) are the most serious pests of Annona spp. Host plant and distribution are given for each pest species. Key Words: Annona, arthropods, Insecta. RESUMEN Doscientas noventa y seis especies de arthrópodos están asociadas con Annona spp. en el Neotrópico. De las especies mencionadas, el género Bephratelloides (Hyme- noptera: Eurytomidae) y la especie Cerconota anonella (Sepp) (Lepidoptera: Oecopho- ridae) sobresalen como las plagas mas importantes de Annona spp. Se mencionan las plantas hospederas y la distribución de cada especie. The genus Annona is confined almost entirely to tropical and subtropical America and the Caribbean region (Safford 1914). Edible species include Annona muricata L. (soursop), A. squamosa L. (sugar apple), A. cherimola Mill. (cherimoya), and A. retic- ulata L. (custard apple). Each geographical region has its own distinctive pest fauna, composed of indigenous and introduced species (Bennett & Alam 1985, Brathwaite et al. 1986, Brunner et al. 1975, D’Araujo et al. 1968, Medina-Gaud et al. 1989, Peña et al. 1984, Posada 1989, Venturi 1966). These reports place emphasis on the broader as- pects of pest species. Some recent regional reviews of the status of important pests and their control have been published in Puerto Rico, U.S.A., Colombia, Venezuela, the Caribbean Region and Chile (Medina-Gaud et al.
    [Show full text]
  • Sociality in Caterpillars: Investigations Into the Mechanisms Associated with Grouping Behaviour, from Vibroacoustics to Sociogenomics
    Sociality in Caterpillars: Investigations into the Mechanisms Associated with Grouping Behaviour, from Vibroacoustics to Sociogenomics by Chanchal Yadav A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in Biology Carleton University Ottawa, Ontario © 2020, Chanchal Yadav Abstract Social grouping is widespread among larval insects, particularly in a number of phytophagous larval Lepidoptera (caterpillars). Although the benefits of social grouping are widely recognized, the proximate mechanisms mediating grouping behaviour, such as group formation and maintenance, are poorly understood. My Ph.D. thesis takes a pioneering approach to understanding these mechanisms, specifically, by studying the roles of vibroacoustics and sociogenomics, using the masked birch caterpillar, Drepana arcuata (Lepidoptera: Drepanoidea), as a model. There are two main objectives of my thesis - (i) to test the hypothesis that caterpillars employ plant-borne vibratory signals to recruit conspecifics to social groups; and (ii) to test the hypothesis that differential gene expression is associated with developmental transitions from social to solitary behavioural states. For the first objective, I documented morphological and behavioural changes in the larvae, showing that there are five larval instars, and developmental changes in social and signalling behaviour. Specifically, early instars (I, II) live in small social groups, and late instars (IV, V) live solitarily, with third instars (III) being transitional. Instars I-III generate four signal types (AS, BS, MS, MD), instars IV, V generate three signals (AS, MS, MD). I then used an experimental approach to test if early instars employ vibrations during social recruitment, and found that vibratory signals are used to advertise feeding and silk shelters, leading to recruitment, with higher signalling rates resulting in faster joining times by conspecifics.
    [Show full text]
  • 1 ACTUALIDADES BIOLOGICAS V33 N95.Indd
    Muriel et al. Actual Biol 33 (95): 275-285, 2011 NUEVOS REGISTROS DE PLANTAS HOSPEDERAS Y DISPONIBILIDAD DE RECURSOS PARA MARIPOSAS ITHOMIINI (LEPIDOPTERA: NYMPHALIDAE: DANAINAE), EN AGROECOSISTEMAS DE CAFÉ COLOMBIANOS NEW HOST PLANT RECORDS AND RESOURCE AVAILABILITY TO ITHOMIINI BUTTERFLIES (LEPIDOPTERA: NYMPHALIDAE: DANAINAE), IN COLOMBIAN COFFEE AGROECOSYSTEMS Sandra B. Muriel1, 3, Jorge Montoya2, 4, Alejandra Restrepo1, 5, Jonathan Muñoz1, 6 Resumen En el trópico se dispone de pocos datos de la mayoría de los organismos, incluyendo las mariposas, en aspectos claves de su ciclo de vida, sus plantas hospederas y factores explicativos de su diversidad y abundancia. El objetivo de este trabajo fue identificar las plantas hospederas de larvas Ithomiini (Lepidoptera) en agroecosistemas de café y evaluar el efecto de las variables: sistema de producción, área en bosque y diversidad de hospederas sobre la diversidad y abundancia de este grupo. En seis fincas de café de Fredonia (Antioquia), Colombia, se recolectaron plantas de las familias Apocynaceae, Gesneriaceae y Solanaceae, que fueron identificadas en los Herbarios HUA y MEDEL de Medellín. En las fincas se registraron los adultos observados en vuelo y se recolectaron huevos, larvas y pupas de Ithomiini de sus plantas hospederas para su cría en laboratorio, hasta la emergencia de adultos. Se determinó el porcentaje de sobrevivencia y mortalidad debida a parasitoidismo. Los datos de diversidad se analizaron por medio de un Análisis de Regresión de Poisson. En los agroecosistemas de café se registraron 27 especies vegetales y 27 mariposas adultas Ithomiini, en laboratorio, se criaron 326 individuos de ocho especies, recolectados sobre siete plantas de la familia Solanaceae.
    [Show full text]
  • How Discoveries in Papilio Butterflies Led to a New Species Concept 100
    Systematics and Biodiversity 1 (4): 441–452 Issued 9 June 2004 DOI: 10.1017/S1477200003001300 Printed in the United Kingdom C The Natural History Museum James Mallet* Department of Biology, Perspectives University College London, 4 Stephenson Way, Poulton, Wallace and Jordan: how London NW1 2HE, UK and discoveries in Papilio butterflies led to Department of Entomology, The Natural History Museum, Cromwell Road, a new species concept 100 years ago London SW7 5BD, UK submitted September 2003 accepted December 2003 Abstract A hundred years ago, in January 1904, E.B. Poulton gave an address en- titled ‘What is a species?’ The resulting article, published in the Proceedings of the Entomological Society of London, is perhaps the first paper ever devoted entirely to a discussion of species concepts, and the first to elaborate what became known as the ‘biological species concept’. Poulton argued that species were syngamic (i.e. formed reproductive communities), the individual members of which were united by synepi- gony (common descent). Poulton’s species concept was informed by his knowledge of polymorphic mimicry in Papilio butterflies: male and female forms were members of the same species, in spite of being quite distinct morphologically, because they belonged to syngamic communities. It is almost certainly not a coincidence that Al- fred Russel Wallace had just given Poulton a book on mimicry in December 1903. This volume contained key reprints from the 1860s including the first mimicry papers, by Henry Walter Bates, Wallace himself and Roland Trimen. All these papers deal with species concepts and speciation as well as mimicry, and the last two contain the initial discoveries about mimetic polymorphism in Papilio: strongly divergent female morphs must belong to the same species as non-mimetic males, because they can be observed in copula in nature.
    [Show full text]
  • Life History and Biology of Forbestra Olivencia (Ithomiinae, Nymphalidae) Ryan I
    University of the Pacific Scholarly Commons College of the Pacific aF culty Articles All Faculty Scholarship 1-1-2006 Life history and biology of Forbestra olivencia (Ithomiinae, Nymphalidae) Ryan I. Hill University of the Pacific, [email protected] Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles Part of the Biology Commons Recommended Citation Hill, R. I. (2006). Life history and biology of Forbestra olivencia (Ithomiinae, Nymphalidae). Journal of the Lepidopterists’ Society, 60(4), 203–210. https://scholarlycommons.pacific.edu/cop-facarticles/524 This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific aF culty Articles by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. VOLUME 60, NUMBER 4 203 Journal of the Lepidopterists’ Society 60(4), 2006, 203–210 LIFE HISTORY AND BIOLOGY OF FORBESTRA OLIVENCIA (BATES, 1862) (NYMPHALIDAE, ITHOMIINAE) RYAN I. HILL 3060 Valley Life Sciences Building, Department of Integrative Biology, University of California, Berkeley, CA 94720 email: [email protected] ABSTRACT. Forbestra is the only mechanitine genus lacking a thorough life history description and little is known of its biology. Accord- ingly I describe the immature stages including first instar chaetotaxy, and provide observations on the biology of Forbestra olivencia from Garza Cocha in eastern Ecuador. Morphological characters from the early stages of Forbestra olivencia are identified that are unique to Forbestra and support the close relationship of Forbestra and Mechanitis. Forbestra olivencia was a moderately common butterfly at Garza Cocha during the sample period, far outnumbering other sympatric Forbestra.
    [Show full text]
  • K & K Imported Butterflies
    K & K Imported Butterflies www.importedbutterflies.com Ken Werner Owners Kraig Anderson 4075 12 TH AVE NE 12160 Scandia Trail North Naples Fl. 34120 Scandia, MN. 55073 239-353-9492 office 612-961-0292 cell 239-404-0016 cell 651-269-6913 cell 239-353-9492 fax 651-433-2482 fax [email protected] [email protected] Other companies Gulf Coast Butterflies Spineless Wonders Supplier of Consulting and Construction North American Butterflies of unique Butterfly Houses, and special events Exotic Butterfly and Insect list North American Butterfly list This a is a complete list of K & K Imported Butterflies We are also in the process on adding new species, that have never been imported and exhibited in the United States You will need to apply for an interstate transport permit to get the exotic species from any domestic distributor. We will be happy to assist you in any way with filling out the your PPQ526 Thank You Kraig and Ken There is a distinction between import and interstate permits. The two functions/activities can not be on one permit. You are working with an import permit, thus all of the interstate functions are blocked. If you have only a permit to import you will need to apply for an interstate transport permit to get the very same species from a domestic distributor. If you have an import permit (or any other permit), you can go into your ePermits account and go to my applications, copy the application that was originally submitted, thus a Duplicate application is produced. Then go into the "Origination Point" screen, select the "Change Movement Type" button.
    [Show full text]
  • Nymphalidae: Ithomiinae)
    STUDIES ON THE ECOLOGY AND EVOLUTION OF NEOTROPICAL ITHOMIINE BUTTERFLIES (NYMPHALIDAE: ITHOMIINAE) by GEORGE WILLIAM BECCALONI A thesis submitted for the degree of Doctor ofPhilosophy ofthe University ofLondon October 1995 Biogeography and Conservation Laboratory Centre for Population Biology Department of Entomology Imperial College The Natural History Museum Silwood Park Cromwell Road Ascot London SW7 5BD Berkshire SL5 7PY 2 To my mother, Benjie & Judy in love and gratitude 3 ABSTRACT Two aspects ofthe ecology ofNeotropical ithomiine butterflies (Nymphalidae: Ithomiinae) are discussed: mimicry (Chapters 2, 3) and species richness (Chapters 4, 5). Chapter 2 defines eight mimicry complexes involving ithomiines and other insects found in eastern Ecuador. These complexes are dominated by ithomiine individuals. Hypotheses to explain polymorphism in Batesian and Mullerian mimics are assessed. In Chapter 3, evidence that sympatric ithomiine-dominated mimicry complexes are segregated by microhabitat is reviewed. Data confirm that sympatric complexes are segregated vertically by flight height. Flight height is shown to be positively correlated with larval host-plant height. Host-plant partitioning between species in a butterfly community results in the formation of microhabitat guilds of species, and evidence suggests that mimicry may evolve between species which share a guild, but not between guilds. Models for the evolution of mimicry complexes in sympatry, and for polymorphism and dual sex-limited mimicry in Mullerian mimics, are discussed in the light of these findings. Chapter 4 investigates relationships between species richness offamilies and subfamilies ofNeotropical butterflies and overall butterfly species richness at local and regional scales. A strong positive correlation is demonstrated between ithomiine richness and the species richness of all other butterflies.
    [Show full text]
  • Ecologically Relevant Cryptic Species in the Highly Polymorphic Amazonian Butterfly Mechanitis Mazaeus S.L
    bs_bs_banner Biological Journal of the Linnean Society, 2012, 106, 540–560. With 7 figures Ecologically relevant cryptic species in the highly polymorphic Amazonian butterfly Mechanitis mazaeus s.l. (Lepidoptera: Nymphalidae; Ithomiini) RYAN I. HILL1*, MARIANNE ELIAS2, KANCHON K. DASMAHAPATRA3, CHRIS D. JIGGINS4, VICTOR KOONG5, KEITH R. WILLMOTT6 and JAMES MALLET3,7 1Department of Biological Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, CA 95211, USA 2CNRS, UMR 7205, Muséum National d’Histoire Naturelle, Département Systématique et Evolution, 45 Rue Buffon, CP50, 75005, Paris, France 3Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK 4Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK 5Millipore Corporation, 28820 Single Oak Drive, Temecula, CA 92590, USA 6McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, SW 34th Street and Hull Road, PO Box 112710, Gainesville, FL 32611-2710, USA 7Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Received 1 September 2011; revised 1 December 2011; accepted for publication 1 December 2011bij_1874 540..560 The understanding of mimicry has relied on a strong biosystematic framework ever since early naturalists first recognized this textbook example of natural selection. We follow in this tradition, applying new biosystematics information to resolve problems in an especially difficult genus of tropical butterflies. Mechanitis species are important components of Neotropical mimetic communities. However, their colour pattern variability has presented challenges for systematists, and has made it difficult to study the very mimicry they so nicely illustrate. The South American Mechanitis mazaeus and relatives have remained particularly intractable.
    [Show full text]