Patterns of Genome Size Diversity in Invertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of Genome Size Diversity in Invertebrates PATTERNS OF GENOME SIZE DIVERSITY IN INVERTEBRATES: CASE STUDIES ON BUTTERFLIES AND MOLLUSCS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by PAOLA DIAS PORTO PIEROSSI In partial fulfilment of requirements For the degree of Master of Science April, 2011 © Paola Dias Porto Pierossi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82784-0 Our file Notre reference ISBN: 978-0-494-82784-0 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada ABSTRACT PATTERNS OF GENOME SIZE DIVERSITY IN INVERTEBRATES: CASE STUDIES ON BUTTERFLIES AND MOLLUSCS Paola Dias Porto Pierossi Advisor: University of Guelph T. Ryan Gregory This thesis investigates genome size relationships with organismal and ecological traits in butterflies and molluscs. Relationships between genome size and organismal-level traits were analyzed for 84 species of butterflies. All estimates were found to be within the hypothetical 2pg threshold for holometabolous insects, and positive correlations were observed with sperm length, habitat choices, and food preferences. In addition, correlations between genome size and ecological traits, such as habitat shifts and latitude were examined in 259 species of molluscs (gastropods and bivalves). While variation in DNA content was not associated with environmental shifts, within gastropods it was positively correlated with latitude. Conversely, in bivalves both environmental shifts and latitude were marginally correlated to DNA content. These results suggest that before a complete understanding of the evolution of the genome can be achieved, multiple levels of biological organization will need to be explored in different taxa. ACKNOWLEDGEMENTS First and foremost I would like to thank Dr. T Ryan Gregory, my advisor, for making all of this possible. When we met 6 years ago, I could never have imagined how this experience would shape my life. Your invaluable mentoring has inspired me to always dream bigger and aim higher. Thank you for all your advice and guidance. I would also like to express my sincere gratitude to my committee members, Dr. Sarah Adamowicz and Dr. Paul Hebert for their unfailing assistance throughout the creation and development of this thesis. Thanks are due to all members of the Gregory, Lynn, Crease, Hebert and Adamowicz labs, past and present. In particular, I would like to thank Tyler Elliott and Nick Jeffery for sharing this experience with me every step of the way and for putting up with my endless questions and requests. The completion of this thesis would not have been possible without many collaborations and partnerships. For that, I would like to thank Adrienne Brewster and the entire staff of the Cambridge Butterfly Conservatory, and Cheryl Tyndall and the staff of Niagara Butterfly Conservatory for supplying so many of the specimens used in this study; Michael Mucci and Tannis Slimmon for providing the adequate conditions for me to raise my butterflies; Dr. John Wilson, Dr. Vazrick Nazari, Jayme Sones and the staff at the Canadian Center for DNA Barcoding for their vital assistance in making sure my samples were properly barcode; Dr. Andre Martel, Dr. Eva Pip, Dr. Gerry Mackie, and Robert Forsyth for identifying all my molluscan specimens; and the staff at the Churchill Northern Study Center for their excellent hospitality and accommodations. You have all been instrumental in allowing me to conduct my research. Most importantly, I would like to thank all my friends and family for all of their love and support. I am especially indebted to my parents, Joceli Pierossi and Deborah Porto Pierossi for all the sacrifice you have made to provide the best opportunities for me. I am forever grateful to your continuous encouragement for me to pursue a higher level of education, and for believing I could do it when I didn't believe it myself. To my sister, Juliana Pierossi, thank you for your wisdom and guidance. You are much more than my big sister, you are the example I try to follow. Thank you for all the lessons you taught me along the way. Lastly, thanks to Callie Sanderson for keeping me sane and making this experience a little more enjoyable. I dedicate this thesis to all of you. "Ofuturo sefaz agora E cada erro e uma vitoria Pois a derrota nao existe Nao ha conquista sem labuta A vida e uma infinita luta Onde so perde quern desiste." - Douglas Rafael ii TABLE OF CONTENTS LIST OF FIGURES viii LIST OF TABLES xi CHAPTER ONE: AN OVERVIEW OF GENOME SIZE RESEARCH 1 INTRODUCTION 2 Defining Genome Size 2 A Historical Account of Genome Size 2 The C-value Enigma 3 Genome Size Evolution in Animals 4 Genome Size Evolution in Invertebrates 5 A Hierarchical Approach to Genome Size Correlations 6 OBJECTIVES 8 CHAPTER TWO: CASE STUDY ONE: INVESTIGATING ORGANISMAL LEVEL PATTERNS OF GENOME SIZE DIVERSTIY IN BUTTERFLIES 12 INTRODUCTION 13 Genome Size Diversity in the Lepidoptera and Other Insects 13 Genome Size and Development in Insects 14 Genome Size Diversity within Butterflies 16 Genome Size and Phenotypic Properties 17 QUESTIONS AND PREDICTIONS 20 METHODS 22 Source of Specimens 22 Specimen Identification 24 Acquiring Genome Size Data 24 Feulgen Image Analysis Densitometry 25 Flow Cytometry 26 iii Other Parameters 27 Cellular Parameters 27 Morphological Parameters 28 Developmental Parameters 28 Ecological Preference Parameters 29 Data Analysis 30 RESULTS 31 Feulgen Image Analysis Densitometry and Flow Cytometry 31 Butterfly versus "Moths" 32 Within Butterfly Comparisons 33 Cellular Parameters 33 Morphological Parameters 33 Developmental Parameters 34 Ecological Preference Parameters 34 DISCUSSION 35 Feulgen Image Analysis and Flow Cytometry 35 Sperm and Haemolymph 35 FIA and FCM 37 "Moths" and Butterflies 37 Temperate "Moths" and Tropical Butterflies 38 Diurnal and Nocturnal Lifestyles 39 Within-Butterfly Comparisons 40 Cellular Parameters 40 Morphological Parameters 41 Developmental Parameters 41 iv Ecological Preference Parameters 42 QUESTIONS AND PREDICTIONS REVISITED 43 FUTURE DIRECTIONS 45 CHAPTER THREE: CASE STUDY TWO: AN EXAMINATION OF ECOLOGICAL PATTERNS IN GENOME SIZE DIVERSITY IN GASTROPOD AND BIVALVE MOLLUSCS 76 INTRODUCTION 77 Molluscs and Genome Size 79 Big Genomes for Land Pioneers? 80 QUESTIONS AND PREDICTIONS 82 METHODS 83 Source of Specimens 83 Collection Protocol 84 Genome Size Estimation 85 Compiled Data 86 Ecological Parameters 86 Phylogenetic Trees 88 Statistical Analysis 90 RESULTS 91 Overview of Genome Sizes in Bivalves and Gastropods 91 Bivalves 91 Gastropods 91 Genome Size and Shifts into Terrestrial Habitats in Gastropods 92 Genome Size and Shifts into Freshwater Habitats in Gastropods 94 Genome Size and Shifts into Freshwater Habitats in Bivalves 95 Genome Size and Thermal Regimes in Marine Gastropods and Bivalves 96 v DISCUSSION 97 Genome Size and Shifts into Terrestrial Habitats in Gastropods 97 Genome Size and Shifts into Freshwater Habitats in Gastropods 97 Genome Size and Shifts into Freshwater Habitats in Bivalves 98 Genome Size and Thermal Regimes in Marine Gastropods and Bivalves 99 QUESTIONS AND ANSWERS REVISITED 101 FUTURE DIRECTIONS 102 SUMMARY 128 CONCLUSION 129 REFERENCES 131 APPENDICES 146 Appendix 2.1 Flow Cytometry Histograms 147 Appendix 2.2 Images of wing scales 151 Appendix 2.3 Biological and ecological parameters analysed in the butterflies 155 Appendix 3.1 All genome size estimates obtained from the Animal Genome Size Database 171 Appendix 3.2 Mean genome size estimates for the species measured in multiple studies 185 Appendix 3.3 Genome size comparisons between estimates measured in this study and those compiled from the Animal Genome Size Database 187 Appendix 3.4 Ecological parameters used in the analysis of the molluscs 188 Appendix 3.5 Supplementary material in the construction of the phylogenetic trees 200 VI Appendix 3.6 Summary of all the data analysed by the three-way ANOVA 207 Appendix 3.7 Barcoding tree of gastropods 209 VII LIST OF FIGURES CHAPTER ONE Figure 1.1 Distribution of genome sizes across the major groups of animals 10 Figure 1.2 Conceptual framework of the different levels of biological organization .... 11 CHAPTER TWO Figure 2.1 Distribution of genome sizes across major insect orders 47 Figure 2.2 Phylogeny of all major superfamilies within Lepidoptera 48 Figure 2.3 Types of cells measured through Feulgen Image Analysis Densitometry ...
Recommended publications
  • GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
    GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N.
    [Show full text]
  • Recolecta De Artrópodos Para Prospección De La Biodiversidad En El Área De Conservación Guanacaste, Costa Rica
    Rev. Biol. Trop. 52(1): 119-132, 2004 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Recolecta de artrópodos para prospección de la biodiversidad en el Área de Conservación Guanacaste, Costa Rica Vanessa Nielsen 1,2, Priscilla Hurtado1, Daniel H. Janzen3, Giselle Tamayo1 & Ana Sittenfeld1,4 1 Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Costa Rica. 2 Dirección actual: Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. 3 Department of Biology, University of Pennsylvania, Philadelphia, USA. 4 Dirección actual: Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica. [email protected], [email protected], [email protected], [email protected], [email protected] Recibido 21-I-2003. Corregido 19-I-2004. Aceptado 04-II-2004. Abstract: This study describes the results and collection practices for obtaining arthropod samples to be stud- ied as potential sources of new medicines in a bioprospecting effort. From 1994 to 1998, 1800 arthropod sam- ples of 6-10 g were collected in 21 sites of the Área de Conservación Guancaste (A.C.G) in Northwestern Costa Rica. The samples corresponded to 642 species distributed in 21 orders and 95 families. Most of the collections were obtained in the rainy season and in the tropical rainforest and dry forest of the ACG. Samples were obtained from a diversity of arthropod orders: 49.72% of the samples collected corresponded to Lepidoptera, 15.75% to Coleoptera, 13.33% to Hymenoptera, 11.43% to Orthoptera, 6.75% to Hemiptera, 3.20% to Homoptera and 7.89% to other groups.
    [Show full text]
  • Contribution to the Knowledge of the Terrestrial Gastropods (Mollusca:Gastropoda) from Vrachanska Planina Mountains
    Bechev, D. & Georgiev, D. (Eds.), Faunistic diversity of Vrachanski Balkan Nature Park. ZooNotes, Supplemen 3, Plovdiv University Press, Plovdiv, 2016 Contribution to the knowledge of the terrestrial gastropods (Mollusca:Gastropoda) from Vrachanska Planina Mountains IVAILO K. DEDOV, ULRICH E. SCHNEPPAT, FABIA KNECHTLE GLOGGER Abstract. Gastropods fauna from the Vrachanska Planina Mountains (= Vrachanska Planina), Northwest Bulgaria, as well it presents the up to now unpublished results of several research trips of the authors and further collectors in the region. In total 90 terrestrial gastropods species are now known from this mountain area. 78 species were published IURPWKHEHJLQQLQJRIUHVHDUFKLQWKLVDUHDXSWRUHFHQWO\VSHFLHVZHUHFRQÀUPHGZLWK QHZÀQGLQJVDQGVSHFLHVZHUHQRWIRXQGDJDLQZKLOHWKHFRXUVHVRIRXULQYHVWLJDWLRQV JDVWURSRGVSHFLHVDUHQHZO\UHFRUGHGIRUWKHUDQJH Key words: Bulgaria, Vrachanska Planina Mountains, terrestrial gastropods. Introduction )URPWKHEHJLQQLQJRIWKHWKFHQWXU\XQWLOSUHVHQWDXWKRUVKDYHSXEOLVKHG 40 studies concerning the Vrachanska Planina Mts. gastropods fauna. Until the present work 78 terrestrial gastopods species are known to live in this restricted northwestern area of the Stara Planina Mountains Ridge. The Vrachanska Mts. are in shape of an inverted triangle, ZLWKDERXWVLGHOHQJWKVRIDQGNPDQGDEDVHRINPRQO\ ,QWKHFRXUVHRIRXUVWXGLHVVSHFLHVZHUHFRQÀUPHGDQGVXPPDULVHGLQ7DEOH 7KHSUHVHQWZRUNLVDGGLQJQHZVSHFLHVIRUWKHUHJLRQ7KHQHZQXPEHURIVSHFLHVIRU WKH9UDFKDQVND0WVUHSUHVHQWVDERXWRIWKHWHUUHVWULDOJDVWURSRGVVSHFLHVNQRZQ IRU%XOJDULD 0LWRYDQG'HGRY
    [Show full text]
  • A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico. Gary Noel Ross Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1967 A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico. Gary Noel Ross Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ross, Gary Noel, "A Distributional Study of the Butterflies of the Sierra De Tuxtla in Veracruz, Mexico." (1967). LSU Historical Dissertations and Theses. 1315. https://digitalcommons.lsu.edu/gradschool_disstheses/1315 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 67-14,010 ROSS, Gary Noel, 1940- A DISTRIBUTIONAL STUDY OF THE BUTTERFLIES OF THE SIERRA DE TUXTLA IN VERACRUZ, MEXICO. Louisiana State University and Agricultural and Mechanical CoUege, Ph.D., 1967 Entomology University Microfilms, Inc., Ann Arbor, Michigan A DISTRIBUTIONAL STUDY OF THE BUTTERFLIES OF THE SIERRA DE TUXTLA IN VERACRUZ, MEXICO A D issertation Submitted to the Graduate Faculty of the Louisiana State University and A gricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Gary Noel Ross M.S., Louisiana State University, 196*+ May, 1967 FRONTISPIECE Section of the south wall of the crater of Volcan Santa Marta. May 1965, 5,100 feet. ACKNOWLEDGMENTS Many persons have contributed to and assisted me in the prep­ aration of this dissertation and I wish to express my sincerest ap­ preciation to them all.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • Annotated Checklist of the Butterflies of Bentsen-Rio Grande Valley State
    AN ANNOTATED CHECKLIST OF THE BUTTERFLIES (LEPIDOPTERA: RHOPALOCERA) OF BENTSEN-RIO GRANDE STATE VALLEY PARK AND VICINITY JUNE, 1974 Published by TEXAS PARKS & WILDLIFE DEPARTMENT BENTSEN-RIO GRANDE VALLEY STATE PARK P.O. 30X 988; MISSION, TEXAS 78572 INTRODUCTION The species listed here in are primarily a result of the collecting by the authors during the period 1972-1973. Certain important records of the previous several years are also included. Additionally, the checklist incorporates records of a number of other lepidopterists. The primary focus of the checklist, then, is upon recent collecting, rather than being an attempt to list all known records from the Mid-Valley area. All lepidopterists collecting in the park and vicinity are urged to send copies of their records to the authors and/or the park authorities. A number of species on the list have been taken in Hidalgo Co. but not yet within the actual confines of the park; the annotations will indicate which species these are. Some of these have been taken at Santa Ana National Wildlife Refuge, approximately thirty miles down river, in habitats similar to those within the park. Others have been taken within several miles of the park, in nearby towns and along roadsides. These species can be reasonably expected to occur in the park, and their inclusion upon this list should alert the collector to their possible presence. The annotations have been kept necessarily brief. They are intended to aid the visiting lepidopterist in evaluating the significance of his catches. Local larval food plants are given where known. Much, however, is still to be learned regarding the life histories of even some of the commoner species.
    [Show full text]
  • Otago Submarine Canyons: Mapping and Macrobenthos
    Otago Submarine Canyons: Mapping and Macrobenthos Bryce A. Peebles A thesis submitted in partial fulfilment for the degree of Master of Science at the University of Otago December 2013 ii Abstract Submarine canyons are steep-sided “V’ or “U” shaped valleys that incise continental slopes worldwide. The geophysical and oceanographic features of submarine canyons can produce environmental conditions that cause benthic assemblages to be distinctive and productive compared to those of the adjacent slope; however the assemblages are potentially vulnerable to anthropogenic impacts, including bottom fishing. In order to help inform policy and management, submarine canyons need to be objectively defined topographically and their benthic assemblages characterised. A canyon network occurs off the Otago Peninsula, south-eastern New Zealand, but lack of detailed bathymetric data and adequate benthic sampling has limited study of the canyons. This thesis outlines a method of defining submarine canyon areas and examines epifaunal and infaunal assemblages of the Otago canyons and adjacent slope. Objective definition of the Otago canyon network in the GIS software GRASS along with the steps to use this methodology worldwide are described. Archival count data from 1966-74 on the epifauna are analysed using the PRIMER suite of programs to characterise epifaunal assemblages. Anomurans, polychaetes, asteroids and ascidians make up 70% of the epifaunal canyon assemblage. The epifaunal assemblage is clearly defined by water depth and recognisable from 380 m. Quantitative sampling of infauna in Saunders canyon, Papanui canyon and adjacent slope was carried out to examine infaunal community structure of the canyons and adjacent slope. Infaunal canyon assemblages are dominated by polychaetes, amphipods, ophiuroids, decapods and isopods in canyons, accounting for 75% of collected individuals.
    [Show full text]
  • Seashore Beaty Box #007) Adaptations Lesson Plan and Specimen Information
    Table of Contents (Seashore Beaty Box #007) Adaptations lesson plan and specimen information ..................................................................... 27 Welcome to the Seashore Beaty Box (007)! .................................................................................. 28 Theme ................................................................................................................................................... 28 How can I integrate the Beaty Box into my curriculum? .......................................................... 28 Curriculum Links to the Adaptations Lesson Plan ......................................................................... 29 Science Curriculum (K-9) ................................................................................................................ 29 Science Curriculum (10-12 Drafts 2017) ...................................................................................... 30 Photos: Unpacking Your Beaty Box .................................................................................................... 31 Tray 1: ..................................................................................................................................................... 31 Tray 2: .................................................................................................................................................... 31 Tray 3: ..................................................................................................................................................
    [Show full text]
  • CLECOM-Liste Österreich (Austria)
    CLECOM-Liste Österreich (Austria), mit Änderungen CLECOM-Liste Österreich (Austria) Phylum Mollusca C UVIER 1795 Classis Gastropoda C UVIER 1795 Subclassis Orthogastropoda P ONDER & L INDBERG 1995 Superordo Neritaemorphi K OKEN 1896 Ordo Neritopsina C OX & K NIGHT 1960 Superfamilia Neritoidea L AMARCK 1809 Familia Neritidae L AMARCK 1809 Subfamilia Neritinae L AMARCK 1809 Genus Theodoxus M ONTFORT 1810 Subgenus Theodoxus M ONTFORT 1810 Theodoxus ( Theodoxus ) fluviatilis fluviatilis (L INNAEUS 1758) Theodoxus ( Theodoxus ) transversalis (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) danubialis danubialis (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) danubialis stragulatus (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) prevostianus (C. P FEIFFER 1828) Superordo Caenogastropoda C OX 1960 Ordo Architaenioglossa H ALLER 1890 Superfamilia Cyclophoroidea J. E. G RAY 1847 Familia Cochlostomatidae K OBELT 1902 Genus Cochlostoma J AN 1830 Subgenus Cochlostoma J AN 1830 Cochlostoma ( Cochlostoma ) septemspirale septemspirale (R AZOUMOWSKY 1789) Cochlostoma ( Cochlostoma ) septemspirale heydenianum (C LESSIN 1879) Cochlostoma ( Cochlostoma ) henricae henricae (S TROBEL 1851) - 1 / 36 - CLECOM-Liste Österreich (Austria), mit Änderungen Cochlostoma ( Cochlostoma ) henricae huettneri (A. J. W AGNER 1897) Subgenus Turritus W ESTERLUND 1883 Cochlostoma ( Turritus ) tergestinum (W ESTERLUND 1878) Cochlostoma ( Turritus ) waldemari (A. J. W AGNER 1897) Cochlostoma ( Turritus ) nanum (W ESTERLUND 1879) Cochlostoma ( Turritus ) anomphale B OECKEL 1939 Cochlostoma ( Turritus ) gracile stussineri (A. J. W AGNER 1897) Familia Aciculidae J. E. G RAY 1850 Genus Acicula W. H ARTMANN 1821 Acicula lineata lineata (DRAPARNAUD 1801) Acicula lineolata banki B OETERS , E. G ITTENBERGER & S UBAI 1993 Genus Platyla M OQUIN -TANDON 1856 Platyla polita polita (W. H ARTMANN 1840) Platyla gracilis (C LESSIN 1877) Genus Renea G.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Glyptophysa (Glyptophysa) Novaehollandica (Bowdich, 1822)
    Glyptophysa (Glyptophysa) novaehollandica (Bowdich, 1822) Disclaimer This genus is in need of revision, as the species concepts we have used have not been rigorously tested. Unpublished molecular Glyptophysa (Glyptophysa) novaehollandica Glyptophysa novaehollandica, ventral view of (adult size may exceed 30 mm) head-foot, NW Australia. Photo J. Walker. Glyptophysa novaehollandica, dorsal view of head-foot, NW Australia. Photo J. Walker. Distribution of Glyptophysa (Glyptophysa) novaehollandica. data indicate that the species units we are here using appear to be justified, however they are not accompanied by clear-cut morphological characters that allow separation based on shell characters alone. As the species units appear to be overall concordant with state boundaries, we have used these boundaries to aid delimiting species. This situation is not ideal, and can only be resolved by additional molecular and morphological studies involving dense sampling. Diagnostic features The taxonomy of Glyptophysa is very poorly understood. This is one of several species of relatively smooth shelled Glyptophysa that are variable in shape and in periostracal development (periostracal hairs and spirals can be present), even within a single population. A large number of species-group names are available and it is quite possible that more species occur in Australia. At present we are recognising only three, in addition to G. aliciae. This species is one of three that we are somewhat tentatively recognising (see statement under Notes) that were previsously referred to as Glyptophysa gibbosa (now treated as a synomym of G. novaehollandica). These taxa are in need of revision, as the species concepts we have used have not been rigorously tested.
    [Show full text]
  • Land Snail Acicula Parcelineata (Architaenioglossa: Cyclophoroidea: Aciculidae) in Ukraine: Distribution, Variability, Habitat Preferences and Conservation Status
    Ruthenica, 2019, vol. 29, No. 2: 94-102. © Ruthenica, 2019 Published online March 5, 2019 http: www.ruthenica.com Land snail Acicula parcelineata (Architaenioglossa: Cyclophoroidea: Aciculidae) in Ukraine: distribution, variability, habitat preferences and conservation status V. SKVORTSOVA1, I. BALASHOV2 1T. Shevchenko National University of Kyiv, Volodymyrska str. 60, Kyiv, 01033, UKRAINE. 2I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnytsky str. 15, Kyiv, 01030, UKRAINE. E-mail: [email protected] ABSTRACT. All available data and most of materials lineata is considered to be “Least Concern” [Cutte- on Acicula parcelineata from Ukraine are reviewed. lod et al., 2011], it was considered “Critically En- Thirteen areas inhabited by the species are reported for dangered” for Czhechia [Beran et al., 2017], “En- Ukraine, some of which include several known sites. dangered” for Slovakia [Šteffek, Vavrová, 2006], Five of these areas were not reported before. Map of “Near Threatened” for Ukraine [Balashov, 2016a] general distribution of A. parcelineata is provided (out- side Ukraine based on published data). Habitat prefer- and “Data Deficient” for Poland [Wiktor, Riedel, ences of this species are reviewed, it occurs in Ukraine 2002]. For Romania list of molluscs’ species that almost exclusively in forests with presence of beech, require protection doesn’t exist. Therefore, in all on altitude 300-1100 m. Conservation status of A. par- countries where conservation status of A. parcelin- celineata in Ukraine is shown to be “Near Threatened” eata was estimated it was considered to be region- according to IUCN criterions, it is recommended to be ally threatened or potentially threatened.
    [Show full text]