How Discoveries in Papilio Butterflies Led to a New Species Concept 100
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Visual Art and Camouflage
University of Northern Iowa UNI ScholarWorks Faculty Publications Faculty Work 1978 On Visual Art and Camouflage Roy R. Behrens University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1978 The MIT Press Follow this and additional works at: https://scholarworks.uni.edu/art_facpub Part of the Art and Design Commons Recommended Citation Behrens, Roy R., "On Visual Art and Camouflage" (1978). Faculty Publications. 7. https://scholarworks.uni.edu/art_facpub/7 This Article is brought to you for free and open access by the Faculty Work at UNI ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Leonardo. Vol. 11, pp. 203-204. 0024--094X/78/070 I -0203S02.00/0 6 Pergamon Press Ltd. 1978. Printed in Great Britain. ON VISUAL ART AND CAMOUFLAGE Roy R. Behrens* In a number of books on visual fine art and design [ 1, 21, countershading makes a 3-dimensional object seem flat, there is mention of the kinship between camouflage and while normal shading in flat paintings can make a painting, but no one has, to my knowledge, pursued it. I depicted object appear to be 3-dimensional. He also have intermittently researched this relationship for discussed the function of disruptive patterning, in which several years, and my initial observations have recently even the most brilliant colors may contribute to the been published [3]. Now I have been awarded a faculty destruction of an animal’s outline. While Thayer’s research grant from the Graduate School of the description of countershading is still respected, his book is University of Wisconsin-Milwaukee to pursue this considered somewhat fanciful because of exaggerated subject in depth. -
LS28 Camouflage and Mimicry Follow up Student #2
Follow-up Activity: For Students Life Science 28: Camouflage and Mimicry Introduction: In this lesson, camouflage & mimicry were explored as examples of adaptations adopted by animals to increase their chances of survival. What can an animal do to keep from being a predator's dinner? To survive, some animals use camouflage so they can better blend in with their surroundings. Camouflage is a set of colorings or markings on an animal that help it to blend in with its surroundings, or habitat, and prevent it from being recognized as potential prey. Activity: Candy Camouflage In this science activity, you and your friends will become the hungry predators and you'll hunt for different colored candies. But it may not be as easy as it sounds—some of your prey will be camouflaged by their habitats. Are you ready for the challenge? Materials: • Six plastic bags (one bag for M&Ms; 5 bags for Skittles, separated by color) • Plain M&Ms; at least 10 of each color (at least two 1.69-ounce packages may be needed) • Skittles; at least 60 of each color (one 16-oz package) • Metal pie tin or other deep plate • Cups for collecting candies during the hunt; one cup per predator • Timer • Data charts (attached) • 2-4 Volunteer predators to be hungry M&Ms-feasting birds Preparation: 1. Place 10 M&Ms of each color (yellow, blue, green, brown, red, orange) into one plastic bag 2. Place 60 Skittles of each color (orange, green, red, yellow, purple) into separate plastic bags. This means you will have 5 separate bags of Skittles: one bag containing only red, one bag containing only orange, one bag containing green, one bag of purple and one bag of yellow) 3. -
Alfred Russel Wallace and the Darwinian Species Concept
Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P. -
Phylogenetic Relationships and Historical Biogeography of Tribes and Genera in the Subfamily Nymphalinae (Lepidoptera: Nymphalidae)
Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society 0024-4066The Linnean Society of London, 2005? 2005 862 227251 Original Article PHYLOGENY OF NYMPHALINAE N. WAHLBERG ET AL Biological Journal of the Linnean Society, 2005, 86, 227–251. With 5 figures . Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae) NIKLAS WAHLBERG1*, ANDREW V. Z. BROWER2 and SÖREN NYLIN1 1Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden 2Department of Zoology, Oregon State University, Corvallis, Oregon 97331–2907, USA Received 10 January 2004; accepted for publication 12 November 2004 We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well-studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1-alpha (EF1-a) and 400–403 bp of wing- less (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’ -
Karl Jordan: a Life in Systematics
AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history. -
And Ford, I; Ford, '953) on the Other Hand Have Put Forward a View Intermediate Between the Extreme Ones of Darwin on the One Hand and Goldschmidt on the Other
THE EVOLUTION OF MIMICRY IN THE BUTTERFLY PAPILIO DARDANUS C. A. CLARKE and P. M. SHEPPARD Departments of Medicine and Zoology, University of Liverpool Received23.V.59 1.INTRODUCTION WHENBatesputforward the mimicry hypothesis which bears his name, Darwin (1872), although accepting it, had some difficulty in explaining the evolution of the mimetic resemblance of several distinct species to one distasteful model by a series of small changes, a require- ment of his general theory of evolution. He said "it is necessary to suppose in some cases that ancient members belonging to several distinct groups, before they had diverged to their present extent, accidentally resembled a member of another and protected group in a sufficient degree to afford some slight protection; this having given the basis for the subsequent acquisition of the most perfect resemb- lance ". Punnett (1915) realised that the difficulty is even more acute when one is dealing with a polymorphic species whose forms mimic very distantly related models. Knowing that, in those butterflies which had been investigated genetically, the forms differed by single allelomorphs he concluded that the mimicry did not evolve gradually and did not confer any advantage or disadvantage to the individual. He argued that an allelomorph arises at a single step by mutation and that therefore the mimicry also arises by chance at a single step. Goldschmidt (x) although not denying that mimicry confers some advantage to its possessors also maintained that the resemblance arises fully perfected by a single mutation of a gene distinct from that producing the colour pattern in the model, but producing a similar effect in the mimic. -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
The Genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry
The genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry With the recent migration to Australia of the Tawny Coster (Acraea terpsicore (Linnaeus, 1758)), (see Creature Feature this issue), I thought it might be timely to take a look at the genus worldwide. It must be noted that due to a misidentification A. terpsicore had long been known as A. violae and many references in the literature and on the web refer to it as A. violae. As with much of the Lepidoptera the genus is in a state of flux, and has long been split into the subgenera Acraea (Acraea) and Acraea (Actinote). The genus is placed in the tribe Acraeini and until Harvey (1991) placed it in the subfamily Heliconiinae it was listed in the subfamily Acraeinae. Recent molecular work has made changes and a current listing of the tribe Acraeini, by Niklas Wahlberg, is available at http://www.nymphalidae.net/Classification/Acraeini.htm. It shows members of the old subgenus Acraea (Actinote) being placed in the genus Actinote, and the old subgenus Acraea (Acraea) becoming the genus Acraea with a subgenus Acraea (Bematistes). It also lists several Acraea as unplaced. This may further change as some believe the subgenus Acraea (Bematistes) will move to the genus Bematistes. The genus is primarily Afrotropical with only four species occurring outside this region, these being, Acraea andromacha (Fig. 1) A. meyeri (Fig. 10) A. moluccana and A. terpsicore. A fifth species the Yellow Coster Acraea (Actinote) issoria is now referred to the genus Actinote. Like many of the Nymphalidae the larvae feed on plants which contain cyanogens making the larvae and adults poisonous to predators. -
Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators. -
Butterflies (Lepidoptera: Papilionoidea) in a Coastal Plain Area in the State of Paraná, Brazil
62 TROP. LEPID. RES., 26(2): 62-67, 2016 LEVISKI ET AL.: Butterflies in Paraná Butterflies (Lepidoptera: Papilionoidea) in a coastal plain area in the state of Paraná, Brazil Gabriela Lourenço Leviski¹*, Luziany Queiroz-Santos¹, Ricardo Russo Siewert¹, Lucy Mila Garcia Salik¹, Mirna Martins Casagrande¹ and Olaf Hermann Hendrik Mielke¹ ¹ Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19.020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: E-mail: [email protected]٭ Abstract: The coastal plain environments of southern Brazil are neglected and poorly represented in Conservation Units. In view of the importance of sampling these areas, the present study conducted the first butterfly inventory of a coastal area in the state of Paraná. Samples were taken in the Floresta Estadual do Palmito, from February 2014 through January 2015, using insect nets and traps for fruit-feeding butterfly species. A total of 200 species were recorded, in the families Hesperiidae (77), Nymphalidae (73), Riodinidae (20), Lycaenidae (19), Pieridae (7) and Papilionidae (4). Particularly notable records included the rare and vulnerable Pseudotinea hemis (Schaus, 1927), representing the lowest elevation record for this species, and Temenis huebneri korallion Fruhstorfer, 1912, a new record for Paraná. These results reinforce the need to direct sampling efforts to poorly inventoried areas, to increase knowledge of the distribution and occurrence patterns of butterflies in Brazil. Key words: Atlantic Forest, Biodiversity, conservation, inventory, species richness. INTRODUCTION the importance of inventories to knowledge of the fauna and its conservation, the present study inventoried the species of Faunal inventories are important for providing knowledge butterflies of the Floresta Estadual do Palmito. -
Life History and Biology of Forbestra Olivencia (Bates, 1862) (Nymphalidae, Ithomiinae)
VOLUME 60, NUMBER 4 203 Journal of the Lepidopterists’ Society 60(4), 2006, 203–210 LIFE HISTORY AND BIOLOGY OF FORBESTRA OLIVENCIA (BATES, 1862) (NYMPHALIDAE, ITHOMIINAE) RYAN I. HILL 3060 Valley Life Sciences Building, Department of Integrative Biology, University of California, Berkeley, CA 94720 email: [email protected] ABSTRACT. Forbestra is the only mechanitine genus lacking a thorough life history description and little is known of its biology. Accord- ingly I describe the immature stages including first instar chaetotaxy, and provide observations on the biology of Forbestra olivencia from Garza Cocha in eastern Ecuador. Morphological characters from the early stages of Forbestra olivencia are identified that are unique to Forbestra and support the close relationship of Forbestra and Mechanitis. Forbestra olivencia was a moderately common butterfly at Garza Cocha during the sample period, far outnumbering other sympatric Forbestra. Ecological observations demonstrate similarities between F. olivencia and Mechanitis, but suggest F. olivencia is more restricted to shaded microhabitats. Additional key words: Mechanitini, Mechanitis, chaetotaxy INTRODUCTION MATERIALS AND METHODS Ithomiine butterflies have played an important role in Observations were made intermittently between the development of mimicry theory, having been the 2000-2005 at Garza Cocha (S 00°29.87', W 76°22.45'), original models of imitation described by Bates (1862). Provincia Sucumbios, Ecuador. Early stages were In that paper Henry Bates described Mechanitis reared in plastic cups and plastic bags under ambient olivencia based on wing color pattern differences being conditions (22-30° C, 70-100% relative humidity) in a consistently different from other sympatric Mechanitis wood building with screen windows. -
Redalyc.Acraea Wigginsi Occidentalis (Bethune-Baker, 1926), a New
SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Tropek, R.; Jansta, P.; Lestina, D. Acraea wigginsi occidentalis (Bethune-Baker, 1926), a new butterfly for Nigeria, with remarks on its habitat and known distribution (Lepidoptera: Nymphalidae) SHILAP Revista de Lepidopterología, vol. 41, núm. 161, marzo, 2013, pp. 163-165 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45528755014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 163-165 Acraea wigginsi occiden 10/3/13 19:00 Página 163 SHILAP Revta. lepid., 41 (161), marzo 2013: 163-165 CODEN: SRLPEF ISSN: 0300-5267 Acraea wigginsi occidentalis (Bethune-Baker, 1926), a new butterfly for Nigeria, with remarks on its habitat and known distribution (Lepidoptera: Nymphalidae) R. Tropek, P. Jansta & D. Lestina Abstract Acraea wigginsi occidentalis (Bethune-Baker, 1926) is recorded in Nigeria for the first time, in the Gotel Mountains, close to the Cameroonian border. All of its known distribution is summarized, including four new records from Cameroon. Its occurrence in the degraded submontane grasslands is also discussed as the reason why it has been rarely observed. KEY WORDS: Lepidoptera, Nymphalidae, Acraeini, Afromontane butterflies, Cameroon Volcanic Line, faunistics, Nigeria. Acraea wigginsi occidentalis (Bethune-Baker, 1926), una nueva mariposa para Nigeria, con indicaciones sobre su habitat y distribución conocidea (Lepidoptera: Nymphalidae) Resumen Se cita por primera vez para Nigeria a Acraea wigginsi occidentalis (Bethune-Baker, 1926), en las Montañas Gotel, próximas al borde cameroniano.