Adaptations for Survival: Symbioses, Camouflage & Mimicry

Total Page:16

File Type:pdf, Size:1020Kb

Adaptations for Survival: Symbioses, Camouflage & Mimicry Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasitism Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Commensalism or Mutualism? Anemone shrimp http://magma.nationalgeographic.com/ Anemone fish http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp and Eel http://magma.nationalgeographic.com/ Whale Barnacles & Lice What kinds of symbioses are these? Commensal Parasite Camouflage • Often important for predators and prey to avoid being seen • Predators to catch their prey and prey to hide from their predators • Camouflage: Passive or adaptive Passive Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Passive Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Adaptive Camouflage Camouflage by Accessorizing Decorator crab Friday Harbor Marine Health Observatory http://www.projectnoah.org/ Camouflage by Mimicry http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Mimicry • Animals can gain protection (or even access to prey) by looking like something they are not • Many types of mimicry (3 examples): • Müllerian- two dangerous animals evolve to look similar • Batesian- a non-dangerous animal evolves to look like something dangerous • Agressive - a dangerous animal evolves to look like something non-dangerous Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous) Batesian Mimicry Nudibranchs & Flatworms Toxic Nudibranchs Non-Toxic Flatworms http://www.rzuser.uni-heidelberg.de/~bu6/Introduction06.html Batesian Mimicry Nudibranchs & Flatworms Toxic Nudibranchs Non-Toxic Flatworms http://www.rzuser.uni-heidelberg.de/~bu6/Introduction06.html Aggressive Mimicry Predator or parasite mimics something harmless! Cleaner Wrasse Sabre-toothed Blenny Frogfish lures http://theliquidearth.org/2012/10/the-mimic-octopus/.
Recommended publications
  • On Visual Art and Camouflage
    University of Northern Iowa UNI ScholarWorks Faculty Publications Faculty Work 1978 On Visual Art and Camouflage Roy R. Behrens University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1978 The MIT Press Follow this and additional works at: https://scholarworks.uni.edu/art_facpub Part of the Art and Design Commons Recommended Citation Behrens, Roy R., "On Visual Art and Camouflage" (1978). Faculty Publications. 7. https://scholarworks.uni.edu/art_facpub/7 This Article is brought to you for free and open access by the Faculty Work at UNI ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Leonardo. Vol. 11, pp. 203-204. 0024--094X/78/070 I -0203S02.00/0 6 Pergamon Press Ltd. 1978. Printed in Great Britain. ON VISUAL ART AND CAMOUFLAGE Roy R. Behrens* In a number of books on visual fine art and design [ 1, 21, countershading makes a 3-dimensional object seem flat, there is mention of the kinship between camouflage and while normal shading in flat paintings can make a painting, but no one has, to my knowledge, pursued it. I depicted object appear to be 3-dimensional. He also have intermittently researched this relationship for discussed the function of disruptive patterning, in which several years, and my initial observations have recently even the most brilliant colors may contribute to the been published [3]. Now I have been awarded a faculty destruction of an animal’s outline. While Thayer’s research grant from the Graduate School of the description of countershading is still respected, his book is University of Wisconsin-Milwaukee to pursue this considered somewhat fanciful because of exaggerated subject in depth.
    [Show full text]
  • Habitat Selection by Two K-Selected Species: an Application to Bison and Sage Grouse
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-01 Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse Joshua Taft Kaze Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Animal Sciences Commons BYU ScholarsArchive Citation Kaze, Joshua Taft, "Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse" (2013). Theses and Dissertations. 4284. https://scholarsarchive.byu.edu/etd/4284 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Masters of Science Randy T. Larsen, Chair Steven Peterson Rick Baxter Department of Plant and Wildlife Science Brigham Young University December 2013 Copyright © 2013 Joshua T. Kaze All Rights Reserved ABSTRACT Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze Department of Plant and Wildlife Science, BYU Masters of Science Population growth for species with long lifespans and low reproductive rates (i.e., K- selected species) is influenced primarily by both survival of adult females and survival of young. Because survival of adults and young is influenced by habitat quality and resource availability, it is important for managers to understand factors that influence habitat selection during the period of reproduction.
    [Show full text]
  • Predators As Agents of Selection and Diversification
    diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8].
    [Show full text]
  • LS28 Camouflage and Mimicry Follow up Student #2
    Follow-up Activity: For Students Life Science 28: Camouflage and Mimicry Introduction: In this lesson, camouflage & mimicry were explored as examples of adaptations adopted by animals to increase their chances of survival. What can an animal do to keep from being a predator's dinner? To survive, some animals use camouflage so they can better blend in with their surroundings. Camouflage is a set of colorings or markings on an animal that help it to blend in with its surroundings, or habitat, and prevent it from being recognized as potential prey. Activity: Candy Camouflage In this science activity, you and your friends will become the hungry predators and you'll hunt for different colored candies. But it may not be as easy as it sounds—some of your prey will be camouflaged by their habitats. Are you ready for the challenge? Materials: • Six plastic bags (one bag for M&Ms; 5 bags for Skittles, separated by color) • Plain M&Ms; at least 10 of each color (at least two 1.69-ounce packages may be needed) • Skittles; at least 60 of each color (one 16-oz package) • Metal pie tin or other deep plate • Cups for collecting candies during the hunt; one cup per predator • Timer • Data charts (attached) • 2-4 Volunteer predators to be hungry M&Ms-feasting birds Preparation: 1. Place 10 M&Ms of each color (yellow, blue, green, brown, red, orange) into one plastic bag 2. Place 60 Skittles of each color (orange, green, red, yellow, purple) into separate plastic bags. This means you will have 5 separate bags of Skittles: one bag containing only red, one bag containing only orange, one bag containing green, one bag of purple and one bag of yellow) 3.
    [Show full text]
  • Mimicry and Defense
    3/24/2015 Professor Donald McFarlane Mimicry and Defense Protective Strategies Camouflage (“Cryptic coloration”) Diverse Coloration Diversion Structures Startle Structures 2 1 3/24/2015 Camouflage (“Cryptic coloration”) Minimize 3d shape, e.g. flatfish Halibut (Hippoglossus hippoglossus) 3 4 2 3/24/2015 Counter‐Shading 5 Disruptive Coloration 6 3 3/24/2015 Polymorphism – Cepeae snails 7 Polymorphism – Oophaga granuliferus 8 4 3/24/2015 Polymorphism – 9 Polymorphism – Oophaga Geographic locations of study populations and their color patterns. (A) Map of the pacific coast of Colombia showing the three study localities: in blue Oophaga histrionica, in orange O. lehmanni, and in green the pHYB population. (B) Examples of color patterns of individuals from the pHYB population (1–4) and the pattern from a hybrid between Oophaga histrionica and O. lehmanni bred in the laboratory (H) 10 5 3/24/2015 Diversion Structures 11 Startle Structures 12 6 3/24/2015 Warning Coloration (Aposematic coloration) Advertise organism as distasteful, toxic or venomous Problem: Predators must learn by attacking prey; predator learning is costly to prey. Therefore strong selective pressure to STANDARDIZE on a few colors/patterns. This is MULLERIAN MIMICRY. Most common is yellow/black, or red/yellow/black 13 Warning Coloration (Aposematic coloration) Bumblebee (Bombus Black and yellow mangrove snake (Boiga sp.) Sand Wasp (bembix oculata) dendrophila) Yellow‐banded poison dart frog (Dendrobates leucomelas Fire salamander ( Salamandra salamandra) 14 7 3/24/2015 Warning Coloration (Aposematic coloration) coral snakes (Micrurus sp.) ~ 50 species in two families, all venomous 15 Batesian Mimicry 1862 –Henry Walter Bates; “A Naturalist on the River Amazons” 16 8 3/24/2015 Batesian Mimicry Batesian mimics “cheat” –they lack toxins, venom, etc.
    [Show full text]
  • Predatory Behavior of Jumping Spiders
    Annual Reviews www.annualreviews.org/aronline Annu Rev. Entomol. 19%. 41:287-308 Copyrighl8 1996 by Annual Reviews Inc. All rights reserved PREDATORY BEHAVIOR OF JUMPING SPIDERS R. R. Jackson and S. D. Pollard Department of Zoology, University of Canterbury, Christchurch, New Zealand KEY WORDS: salticids, salticid eyes, Portia, predatory versatility, aggressive mimicry ABSTRACT Salticids, the largest family of spiders, have unique eyes, acute vision, and elaborate vision-mediated predatory behavior, which is more pronounced than in any other spider group. Diverse predatory strategies have evolved, including araneophagy,aggressive mimicry, myrmicophagy ,and prey-specific preycatch- ing behavior. Salticids are also distinctive for development of behavioral flexi- bility, including conditional predatory strategies, the use of trial-and-error to solve predatory problems, and the undertaking of detours to reach prey. Predatory behavior of araneophagic salticids has undergone local adaptation to local prey, and there is evidence of predator-prey coevolution. Trade-offs between mating and predatory strategies appear to be important in ant-mimicking and araneo- phagic species. INTRODUCTION With over 4000 described species (1 l), jumping spiders (Salticidae) compose by Fordham University on 04/13/13. For personal use only. the largest family of spiders. They are characterized as cursorial, diurnal predators with excellent eyesight. Although spider eyes usually lack the struc- tural complexity required for acute vision, salticids have unique, complex eyes with resolution abilities without known parallels in animals of comparable size Annu. Rev. Entomol. 1996.41:287-308. Downloaded from www.annualreviews.org (98). Salticids are the end-product of an evolutionary process in which a small silk-producing animal with a simple nervous system acquires acute vision, resulting in a diverse array of complex predatory strategies.
    [Show full text]
  • Seventh Grade
    Name: _____________________ Maui Ocean Center Learning Worksheet Seventh Grade Our mission is to foster understanding, wonder and respect for Hawai‘i’s Marine Life. Based on benchmarks SC.6.3.1, SC. 7.3.1, SC. 7.3.2, SC. 7.5.4 Maui Ocean Center SEVENTH GRADE 1 Interdependent Relationships Relationships A food web (or chain) shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links plants, cows (that eat plants), and humans (that eat cows). Each link in this chain is food for the next link. A food chain always starts with plant life and ends with an animal. Plants are called producers (they are also autotrophs) because they are able to use light energy from the sun to produce food (sugar) from carbon dioxide and water. Animals cannot make their own food so they must eat plants and/or other animals. They are called consumers (they are also heterotrophs). There are three groups of consumers. Animals that eat only plants are called herbivores. Animals that eat other animals are called carnivores. Animals and people who eat both animals and plants are called omnivores. Decomposers (bacteria and fungi) feed on decaying matter. These decomposers speed up the decaying process that releases minerals back into the food chain for absorption by plants as nutrients. Do you know why there are more herbivores than carnivores? In a food chain, energy is passed from one link to another. When a herbivore eats, only a fraction of the energy (that it gets from the plant food) becomes new body mass; the rest of the energy is lost as waste or used up (by the herbivore as it moves).
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Rapid Evolution of Mimicry Following Local Model Extinction Rsbl.Royalsocietypublishing.Org Christopher K
    Evolutionary biology Rapid evolution of mimicry following local model extinction rsbl.royalsocietypublishing.org Christopher K. Akcali and David W. Pfennig Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA Research Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic Cite this article: Akcali CK, Pfennig DW. 2014 species that predators avoid. Here, we evaluated whether—and in which Rapid evolution of mimicry following local direction—Batesian mimicry has evolved in a natural population of model extinction. Biol. Lett. 10: 20140304. mimics following extirpation of their model. We specifically asked whether http://dx.doi.org/10.1098/rsbl.2014.0304 the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics Received: 9 April 2014 from a region where coral snakes remain abundant. Presumably, more pre- cise mimicry has continued to evolve after model extirpation, because Accepted: 22 May 2014 relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior Subject Areas: theoretical and empirical studies, which revealed that only the most precise evolution, ecology, behaviour mimics are favoured as their model becomes increasingly rare.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Adaptations for Survival: Symbioses, Camouflage
    Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.oceanfootage.com/stockfootage/Cleaning_Station_Fish/ http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasites Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Whale Barnacles & Lice Commensalism or Parasitism? Commensalism or Mutualism? http://magma.nationalgeographic.com/ http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp http://magma.nationalgeographic.com/ Anemone Hermit Crab http://www.scuba-equipment-usa.com/marine/APR04/ Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Adaptive Camouflage Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Camouflage by Mimicry Mimicry • Batesian: an edible species evolves to look similar to an inedible species to avoid predation • Mullerian: two or more inedible species all evolve to look similar maximizing efficiency with which predators learn to avoid them Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous)
    [Show full text]
  • OBITUARIES Sir Edward Poulton, F.R.S
    No. 3870, jANUARY 1, 1944 NATURE 15 the University of Edinburgh, previously held by a tragic death, and his successor, F. Hasenohrl, was Black. To him we owe the discovery of the maximum killed in action on the Italian front in 1915. The density of water. The centenary of John Dalton falls chemists born in 1844 include Prof. J. Emerson on July 27 of this year, but any commemoration Reynolds (died 1920), who occupied for twenty-eight must inevitably be clouded over by the results of years the chair of chemistry in the University of the air raid of December 24, 1940, when the premises Dublin, and Ferdinand Hurter (died 1898), a native of the Manchester Literary and Philosophical Society of Schaffhausen, Switzerland, who came to England were completely destroyed. From 1817 until 1844 in 1867 and became principal chemist to the United DaJton was president of the Society, and within its Alkali Company. Among astronomers, Prof. W. R. walls he taught, lectured and experimented. The Brooks (died 1921) of the United States was famous Society had an unequalled collection of his apparatus, as a 'comet hunter'. Charles Trepied (died 1907) was but after digging among the ruins the only things for many years director of the Observatory at found were his gold watch, a spark eudiometer and Bouzariah, eleven kilometres from Algiers, while some charred remains of letters and note-books. A Annibale Ricco (died 1919), though he began life as month after Dalton passed away in Manchester, an engineer, for nineteen years directed the observa­ Francis Baily died in London, after a life devoted to tory of Catania and Etna, his special subject being astronomy and kindred subjects.
    [Show full text]