Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic

Total Page:16

File Type:pdf, Size:1020Kb

Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Published OnlineFirst November 12, 2018; DOI: 10.1158/1078-0432.CCR-18-2297 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis Li-Peng Hu1, Xiao-Xin Zhang2, Shu-Heng Jiang2, Ling-Ye Tao3, Qing Li2, Li-Li Zhu1, Ming-Wei Yang3, Yan-Miao Huo3, Yong-Sheng Jiang3, Guang-Ang Tian2, Xiao-Yan Cao2, Yan-Li Zhang2, Qin Yang2, Xiao-Mei Yang2, Ya-Hui Wang2, Jun Li2, Gary Guishan Xiao4,5, Yong-Wei Sun3, and Zhi-Gang Zhang1,2 Abstract Purpose: Extensive research has reported that the tumor lular ATP in tumor microenvironment promoted PDAC microenvironment components play crucial roles in tumor growth and glycolysis. Further studies showed that the progression. Thus, blocking the supports of tumor microen- agonist-activated P2RY2 triggered PI3K/AKT–mTOR signal- vironment is a promising approach to prevent cancer progres- ing by crosstalk with PDGFR mediated by Yes1, resulting in sion. We aimed to determine whether blocking extracellular elevated expression of c-Myc and HIF1a, which subsequent- ATP–P2RY2 axis could be a potential therapeutic approach for ly enhanced cancer cell glycolysis. Genetic and pharmaco- PDAC treatment. logic inhibition of P2RY2 impaired tumor cell growth Experimental Design: Expression of P2RY2 was determined in subcutaneous and orthotopic xenograft model, as well in 264 human PDAC samples and correlated to patient sur- as delayed tumor progression in inflammation-driven vival. P2RY2 was inhibited in human PDAC cell lines by PDAC model. In addition, synergy was observed when antagonist and shRNA, respectively, and cell viability, clono- AR-C118925XX, the selective antagonist of P2RY2 receptor, genicity, and glycolysis were determined. RNA sequencing of and gemcitabine were combined, resulting in prolonged PDAC cell line was applied to reveal underlying molecular survival of xenografted PDAC mice. mechanisms. Multiple PDAC mouse models were used to Conclusions: These findings reveal the roles of the assess the effects of the P2RY2 inhibition on PDAC progression. P2RY2 in PDAC metabolic reprogramming, suggesting that Results: P2RY2 was upregulated and associated with poor P2RY2 might be a potential metabolic therapeutic target prognosis in PDAC. Activated P2RY2 by increased extracel- for PDAC. Introduction mately 8% (1). Despite much efforts have been invested, there is still no effective drug available for therapy of the disease, and Pancreatic ductal adenocarcinoma (PDAC) is one of the most the prognosis of PDAC has shown less improvement in decades lethal human cancers with a 5-year survival rate of approxi- (2, 3). It is thus an unmet need for understanding of the mechanism underlying regulation of PDAC to develop effective 1State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School targets for therapy of PDAC. of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China. Many studies have reported that the tumor microenviron- 2 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer ment, including the cellular and noncellular components of Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, the tumor niche, plays a critical role in tumor progression (4). Shanghai, P.R. China. 3Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China. 4School Cancer cells form intimate associations with stromal cells, of Pharmaceutical Science and Technology, Dalian University of Technology, resulting in an aberrant increase in growth factors (5), cyto- Dalian, P.R. China. 5Functional Genomics and Proteomics Laboratory, kines (6), chemokines (7), and metabolites (8) within the Osteoporosis Research Center, Creighton University Medical Center, Omaha, tumor microenvironment. The receptors and transporters Nebraska. activated by extracellular proteins or metabolites create the Note: Supplementary data for this article are available at Clinical Cancer crosstalk between cancer and stromal cells, which results in Research Online (http://clincancerres.aacrjournals.org/). metabolic reprograming in the microenvironment, leading L.-P. Hu, X.-X. Zhang, and S.-H. Jiang contributed equally to this article. to the reduced immune response and the accelerated growth Corresponding Authors: Zhi-Gang Zhang, Shanghai Cancer Institute, Ren Ji of cancer cell, and eventually apoptosis escaped. Therefore, Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong abolishing the extracellular supports from the tumor micro- University, 800 Dongchuan Road, Shanghai 200240, P.R. China. Phone: 8621- environment may be a promising approach for effective ther- 3420-6763; Fax: 8621-3420-6022; E-mail: [email protected]; Yong-Wei Sun, apy of cancer. [email protected]; and Gary Guishan Xiao, School of Pharmaceutical Science G-protein–coupled receptors (GPCR), the largest transmem- and Technology, Dalian University of Technology. E-mail: [email protected] brane receptor family in humans, are critical responders of doi: 10.1158/1078-0432.CCR-18-2297 extracellular stimulation and modulators of intracellular sig- Ó2018 American Association for Cancer Research. naling pathways (9). It is well established that GPCRs are 1318 Clin Cancer Res; 25(4) February 15, 2019 Downloaded from clincancerres.aacrjournals.org on September 23, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst November 12, 2018; DOI: 10.1158/1078-0432.CCR-18-2297 Targeting P2RY2 Signaling Prevents the Growth of PDAC for the measurement of glucose and lactate concentration. Total Translational Relevance protein was extracted from the cell pellets and quantified Tumor microenvironment is widely reported to be by Bradford (Thermo Fisher Scientific, catalog no. 23227). involved in cancer progression. Abolishing the supports Glucose uptake was measured using Amplex Red Glucose/ from tumor microenvironment components would be an Glucose Oxidase Assay Kit (Invitrogen, catalog no. A22189). effective way to prevent cancer progression. Our study Glucose consumption was calculated by the net content of the revealed that increased extracellular ATP in pancreatic ductal original glucose concentration deduced from the measured adenocarcinoma (PDAC) microenvironment promotes can- glucose concentration in the medium. Lactate production was cer progression by activating Purinergic Receptor P2Y2 measured by using the Lactate Assay Kit (BioVision, catalog (P2RY2). Thus, activated P2RY2 resulted in activation of no. ABIN411683). Total proteins were used for normalization PI3K–mTOR pathway and elevation of cancer glycolysis by of the results obtained above. These experiments were per- crosstalk with PDGFRb, as intermediated by Src family formed in triplicate manner and repeated twice. kinase, Yes1. Blocking P2RY2 by a selective inhibitor AR-C 118925XX profoundly suppressed tumor progression, pro- Extracellular ATP measurement longed orthotopic PDAC mice survival, and exhibited The ATP levels were determined using a bioluminescent synergistic effect with gemcitabine. Together, P2RY2 might ATP Assay Kit (Beyotime, catalog no. S0027) according to the be a promising target for PDAC therapy. manufacturer's instructions. Tumor interstitial fluids were col- lected as reported previously (14). Briefly, tissues were sup- ported with triple-layered 10-mm nylon mesh in the tube and centrifuged at 50 Â g for 5 minutes to remove surface liquids of tissues, followed by centrifugation at 400 Â g for another crucial mediators in the communication between cancer cells 10 minutes to collect interstitial fluids. The ectonucleotidase and other components in the microenvironment (10–12). In inhibitor ARL 67156 trisodium salts were added to the tumor addition, GPCRs are critical pharmaceutical acceptable targets interstitial fluid throughout the procedure. Luminescence was for the treatment of diseases (13), which may also presumably measured using a luminometer (M1000 PRO, TECAN). The hold true for PDAC. standard ATP samples were used for preparation of the cali- Here, we aimed to identify novel therapeutic targets for bration curve. Results were normalized by total protein from PDAC. We found that P2RY2 expression was elevated in PDAC each sample. All experiments were performed in triplicate and and its high expression correlated with poor survival in patients repeated twice. with PDAC. Further studies revealed that activated P2RY2 promoted cancer progression by enhanced glycolysis. Genetic Human PDAC tissue array analysis or pharmacologic inhibition of P2RY2 significantly suppressed The study was conducted in accordance with International PDAC cell growth both in vitro and in vivo. Collectively, our Ethical Guidelines for Biomedical Research Involving Human results indicate that targeting P2RY2 may provide a new oppor- Subjects (CIOMS). The study was approved by the Research tunity for PDAC therapy. Ethics Committee of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University (Shanghai, P.R. China). Written Materials and Methods informed consent was provided to all the patients before Seahorse analyses enrollment. The patient cohort of human pancreatic tissue The assays for extracellular acidification rate (ECAR) and array containing 264 PDAC specimens and corresponding oxygen consumption rate (OCR) in the cultured cells were per- noncancerous tissues were also obtained from Ren Ji Hospital formed with
Recommended publications
  • Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the A3 and the P2Y2 Purinergic Receptors
    Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the A3 and the P2Y2 Purinergic Receptors Apr. Liesbet Cosyn Thesis submitted to the Faculty of Pharmaceutical Sciences to obtain the degree of Doctor in Pharmaceutical Sciences Promoter Prof. dr. apr. Serge Van Calenbergh Academic year 2007-2008 TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................. 3 1.1 Purinergic Receptors ................................................................................. 3 1.2 Adenosine Analogues and the Adenosine A3 Receptor ......................... 4 1.2.1 Adenosine................................................................................................. 4 1.2.2 The Adenosine Receptors: G-protein-Coupled Receptors........................ 7 1.2.3 Adenosine Receptor Subtypes and Their Signalling............................... 10 1.2.4 The Adenosine A3 Receptor ................................................................... 12 1.2.4.1 Adenosine A3 Receptor Agonists ................................................. 12 1.2.4.2 Adenosine A3 Receptor Antagonists ............................................ 16 1.2.4.3 Allosteric Modulation.................................................................... 21 1.2.4.4 Molecular Modeling of the Adenosine A3 Receptor...................... 22 1.2.4.5 The Neoceptor concept................................................................ 23 1.2.4.6 Therapeutic Potential of A3AR Agonists......................................
    [Show full text]
  • Regulation and Relevance for Chronic Lung Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Purinergic Signalling (2006) 2:399–408 DOI 10.1007/s11302-006-9001-7 ORIGINAL ARTICLE E-NTPDases in human airways: Regulation and relevance for chronic lung diseases Lauranell H. Burch & Maryse Picher Received: 11 January 2005 /Accepted: 21 December 2005 / Published online: 30 May 2006 # Springer Science + Business Media B.V. 2006 Abstract Chronic obstructive lung diseases are char- are characterized by higher rates of nucleotide elimi- acterized by the inability to prevent bacterial infection nation, azide-sensitive E-NTPDase activities and ex- and a gradual loss of lung function caused by recurrent pression. This review integrates the biphasic regulation inflammatory responses. In the past decade, numerous of airway E-NTPDases with the function of purine studies have demonstrated the importance of nucleo- signaling in lung diseases. During acute insults, a tide-mediated bacterial clearance. Their interaction transient reduction in E-NTPDase activities may be with P2 receptors on airway epithelia provides a rapid beneficial to stimulate ATP-mediated bacterial clear- Fon-and-off_ signal stimulating mucus secretion, cilia ance. In chronic lung diseases, elevating E-NTPDase beating activity and surface hydration. On the other activities may represent an attempt to prevent P2 hand, abnormally high ATP levels resulting from receptor desensitization and nucleotide-mediated lung damaged epithelia and bacterial lysis may cause lung damage. edema and exacerbate inflammatory responses. Air- way ATP concentrations are regulated by ecto nucle- Keywords apyrase . bacterial clearance . CD39 . oside triphosphate diphosphohydrolases (E-NTPDases) chronic obstructive lung diseases .
    [Show full text]
  • P2X7 Receptor-Induced CD23 Shedding from B Cells Aleta Pupovac University of Wollongong, [email protected]
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2014 P2X7 receptor-induced CD23 shedding from B cells Aleta Pupovac University of Wollongong, [email protected] Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] P2X7 receptor-induced CD23 shedding from B cells A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Aleta Pupovac Bachelor of Biotechnology (Adv) (Hons) Illawarra Health and Medical Research Institute School of Biological Sciences 2014 THESIS CERTIFICATION I, Aleta Pupovac, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Aleta Pupovac 2014 i ACKNOWLEDGEMENTS I would like to thank my supervisor, Ron Sluyter, for providing me with the skills and patience to tackle science confidently in the future. Your knowledge, guidance and support were essential in the completion of this project, and have moulded me into the scientist that I always hoped to be. I will be forever grateful that you gave me the opportunity to be a part of your lab, and for your excellent supervision. A student cannot ask for a better supervisor. Also thanks to my co-supervisor Marie Ranson, for providing helpful advice over the years.
    [Show full text]
  • A Pilot Exome-Wide Association Study of Age-Related Cataract in Koreans
    Available online at www.jbr-pub.org Open Access at PubMed Central The Journal of Biomedical Research, 2016, 30(3):186-190 Original Article A pilot exome-wide association study of age-related cataract in Koreans Sang-Yong Eom1,2, Dong-Hyuk Yim1,2, Jung-Hyun Kim3, Joo-Byung Chae4, Yong-Dae Kim1,2, Heon Kim1,2, 1​Center for Farmer's Safety and Health, Chungbuk National University Hospital, Cheongju, Chungbuk 28644, Republic of Korea; 2​Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; 3 Department of Optometry, Daejeon Health Science College, Daejeon 34504, Republic of Korea; 4 Department of Ophthalmology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea. Abstract Age-related cataract (ARC) is the most common cause of visual impairment and blindness worldwide. A previous study reported that genetic factors could explain approximately 50% of the heritability of cataract. However, a genetic predisposition to ARC and the contributing factors have not yet been elucidated in the Korean population. In this study, we assessed the influence of genetic polymorphisms on the risk of ARC in Koreans, including 156 cataract cases and 138 healthy adults. We conducted an exome-wide association study using Illumina Human Exome-12v1.2 platform to screen 244,770 single nucleotide polymorphisms (SNPs). No SNPs reached exome-wide significance level of association (P < 1×10−6). B3GNT4 rs7136356 showed the most significant association with ARC (P = 6.54×10−5). Two loci (MUC16 and P2RY2) among the top 20 ARC-associated SNPs were recognized as probably linked to cata- ractogenesis.
    [Show full text]
  • P2Y Receptor Agonists for the Treatment of Dry
    Clinical Ophthalmology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW P2Y2 receptor agonists for the treatment of dry eye disease: a review Oliver C F Lau1 Abstract: Recent advances in the understanding of dry eye disease (DED) have revealed Chameen previously unexplored targets for drug therapy. One of these drugs is diquafosol, a uridine 1,2 nucleotide analog that is an agonist of the P2Y receptor. Several randomized controlled trials Samarawickrama 2 Simon E Skalicky1–3 have demonstrated that the application of topical diquafosol significantly improves objective markers of DED such as corneal and conjunctival fluorescein staining and, in some studies, 1Sydney Eye Hospital, Sydney, NSW, Australia; 2Save Sight Institute, tear film break-up time and Schirmer test scores. However, this has been accompanied by only University of Sydney, Sydney, partial improvement in patient symptoms. Although evidence from the literature is still relatively 3 NSW, Australia; Ophthalmology limited, early studies have suggested that diquafosol has a role in the management of DED. Department, Addenbrooke’s Hospital, Cambridge, United Kingdom Additional studies would be helpful to delineate how different subgroups of DED respond to diquafosol. The therapeutic combination of diquafosol with other topical agents also warrants further investigation. Keywords: dry eye disease, meibomian gland disease, aqueous tear deficiency, diquafosol, P2Y2 agonists Introduction Dry eye disease (DED) is a complex clinical entity characterized by symptoms of discomfort and visual disturbance. It is associated with tear film instability, increased tear film osmolarity, and ocular surface inflammation.1 It has a high prevalence that, depending on the population studied, varies from 5% to 35%.2,3 DED commonly causes symptoms including foreign body sensation, dryness, irritation, itching, and light sensitivity.4 It impacts patients’ daily life and function.
    [Show full text]
  • P2X and P2Y Receptors P2Y and P2X Tocris Bioscience Scientific Review Series
    P2X and P2Y Receptors Kenneth A. Jacobson Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. Tel.: 301-496- 9024, Fax: 301-480-8422, E-mail: [email protected] Kenneth Jacobson serves as Chief of the Laboratory of Bioorganic Chemistry and the Molecular Recognition Section at the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health in Bethesda, Maryland, USA. Dr. Jacobson is a medicinal chemist with interests in the structure and pharmacology of G-protein- coupled receptors, in particular receptors for adenosine and for purine and pyrimidine nucleotides. Contents Subtypes and Structures of P2 Subtypes and Structures of P2 Receptor Families ........ 1 Receptor Families The P2 receptors for extracellular nucleotides are Pharmacological Probes for P2X Receptors .................. 3 widely distributed in the body and participate in 1,2 regulation of nearly every physiological process. DRIVING RESEARCH FURTHER Non-Selective P2X Ligands ............................................ 3 Of particular interest are nucleotide receptors in the immune, inflammatory, cardiovascular, muscular, P2X1 and P2X2 Receptors ............................................... 5 and central and peripheral nervous systems. The ubiquitous signaling properties of extracellular P2X3 Receptor ................................................................ 6 nucleotides acting at two
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the a 3 and the P2Y 2 Purinergic Receptors
    Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the A 3 and the P2Y 2 Purinergic Receptors Apr. Liesbet Cosyn Thesis submitted to the Faculty of Pharmaceutical Sciences to obtain the degree of Doctor in Pharmaceutical Sciences Promoter Prof. dr. apr. Serge Van Calenbergh Academic year 2007-2008 TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................. 3 1.1 Purinergic Receptors ................................................................................. 3 1.2 Adenosine Analogues and the Adenosine A 3 Receptor ......................... 4 1.2.1 Adenosine................................................................................................. 4 1.2.2 The Adenosine Receptors: G-protein-Coupled Receptors........................ 7 1.2.3 Adenosine Receptor Subtypes and Their Signalling............................... 10 1.2.4 The Adenosine A 3 Receptor ................................................................... 12 1.2.4.1 Adenosine A 3 Receptor Agonists ................................................. 12 1.2.4.2 Adenosine A 3 Receptor Antagonists ............................................ 16 1.2.4.3 Allosteric Modulation.................................................................... 21 1.2.4.4 Molecular Modeling of the Adenosine A 3 Receptor...................... 22 1.2.4.5 The Neoceptor concept................................................................ 23 1.2.4.6 Therapeutic Potential of A 3AR Agonists......................................
    [Show full text]
  • Emerging Targets of Inflammation and Tear Secretion in Dry Eye Disease
    Drug Discovery Today Volume 24, Number 8 August 2019 PERSPECTIVE feature Emerging targets of inflammation and tear secretion in dry eye disease Maria Markoulli, [email protected] and Alex Hui The underlying mechanisms of dry eye are thought to be part of a vicious circle involving a hyperosmolarity-triggered inflammatory cascade, resulting in loss of goblet cells and glycocalyx mucin and observed corneal and conjunctival epithelial cell damage. This damage leads to increased tear film instability, further hyperosmolarity and hence perpetuating of a vicious circle. The aim of dry eye management is to restore the homeostasis of the tear film and break the perpetuation of this vicious circle. Despite the plethora of treatment options available, many of these are largely palliative, short-lived and require repeated instillations. Two emerging areas in dry eye therapy aim PERSPECTIVE to promote tear secretion and to safely manage dry eye-associated inflammation and are the focus of this review. Features Dry eye disease and its treatment into aqueous deficiency and evaporative dry Promoting tear secretion Dry eye disease is defined by the Tear Film and eye, but it is now understood that both con- Topical pharmaceutical secretagogues Ocular Surface Dry Eye Workshop (TFOS DEWS) ditions lie on a continuum that can be present Secretagogues stimulate the secretion of the II as ``a multifactorial disease of the ocular simultaneously to a varying degree [1]. aqueous, mucin or lipid constituents of the tear surface characterized by a loss of homeostasis The aim of dry eye management is to restore film, hence minimising the impact of tear film of the tear film, and accompanied by ocular the homeostasis of the tear film and break the instability and goblet cell and glycocalyx mucin symptoms, in which tear film instability and perpetuation of the dry eye circle [3].
    [Show full text]
  • Thèse Version Finale 27 Mai 2011
    Faculté de Pharmacie Ecole Doctorale en Sciences Pharmaceutiques Contribution à l'étude des réponses cellulaires secondaires à l'activation de récepteurs purinergiques ionotropes dans les glandes salivaires et les macrophages de souris Michèle SEIL Thèse présentée en vue de l’obtention du grade de Docteur en Sciences Biomédicales et Pharmaceutiques Promoteur : Jean-Paul DEHAYE (Laboratoire de Chimie biologique et médicale et de Microbiologie pharmaceutique) Composition du jury : Pierre DUEZ (Président) Carine DE VRIESE (Secrétaire) Jean-Michel KAUFFMANN Hassan JIJAKLI Astrid VANDEN ABBEELE (Faculté de Médecine, Université libre de Bruxelles) Bernard ROBAYE (Faculté des Sciences, Université libre de Bruxelles) 2011 REMERCIEMENTS Je voudrais tout d’abord remercier mon promoteur, le Professeur Jean-Paul Dehaye pour m’avoir accueillie dans son laboratoire. Sa motivation, sa disponibilité, son expérience, ses connaissances scientifiques et ses nombreux conseils m’ont permis de mener à bien cette thèse. Je tiens à exprimer ma sincère gratitude au Professeur Stéphanie Pochet pour m’avoir formé aux différentes techniques de laboratoire, pour ses nombreux conseils, sa disponibilité et sa gentillesse. Je remercie le Dr. Michel Vandenbranden pour avoir réalisé les analyses infrarouge et pour ses conseils scientifiques. Je voudrais également exprimer mes remerciements au Professeur Nathalie Verbruggen pour m’avoir donnée accès au spectrophotomètre NanoDrop 2000c. Mes remerciements vont à tous les membres, anciens et actuels, du Département de Biopharmacie dont le Service de Chimie Biologique et Médicale et de Microbiologie Pharmaceutique. Je remercie en particulier Sara, Manuela et Robert pour leur aide lors des manipulations effectuées et pour les moments passés ensemble aux travaux pratiques de Biochimie et de Biologie moléculaire.
    [Show full text]
  • Dry Eye Disease: a Review of Epidemiology in Taiwan, and Its Clinical Treatment and Merits
    Journal of Clinical Medicine Review Dry Eye Disease: A Review of Epidemiology in Taiwan, and its Clinical Treatment and Merits 1, 2,3, 4,5 2,3 6 Yu-Kai Kuo y, I-Chan Lin y, Li-Nien Chien , Tzu-Yu Lin , Ying-Ting How , Ko-Hua Chen 3,7, Gregory J. Dusting 8,9 and Ching-Li Tseng 6,10,11,12,* 1 School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 2 Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan 3 Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan 4 School of Health Care Administration, College of Management, , Taipei Medical University, Taipei 11031, Taiwan 5 Health and Clinical Data Research Center, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan 6 Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan 7 Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan 8 Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia 9 Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia 10 Institute of International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan 11 Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan 12 International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan * Correspondence: [email protected]; Tel.: +886-2736-1661 (ext.
    [Show full text]
  • TFOS DEWS II Clinical Trial Design Report
    The Ocular Surface 15 (2017) 629e649 Contents lists available at ScienceDirect The Ocular Surface journal homepage: www.theocularsurface.com TFOS DEWS II Clinical Trial Design Report * Gary D. Novack, PhD a, b, 1, , Penny Asbell, MD c, Stefano Barabino, MD, PhD d, Michael V.W. Bergamini, PhD e, f, Joseph B. Ciolino, MD g, Gary N. Foulks, MD h, Michael Goldstein, MD i, Michael A. Lemp, MD j, Stefan Schrader, MD, PhD k, Craig Woods, PhD, MCOptom l, Fiona Stapleton, PhD, MCOptom m a Pharma Logic Development, San Rafael, CA, USA b Departments of Pharmacology and Ophthalmology, University of California, Davis, School of Medicine, CA, USA c Department of Ophthalmology, Icahn School of Medicine at Mt Sinai, New York, NY, USA d Clinica Oculistica, University of Genoa, Italy e Nicox Ophthalmics, Inc., Fort Worth, TX, USA f University of North Texas Health Science Center, Fort Worth, TX, USA g Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA h Emeritus Professor of Ophthalmology, University of Louisville School of Medicine, Louisville, KY, USA i Department of Ophthalmology, New England Medical Center and Tufts University, Boston, MA, USA j Department of Ophthalmology, School of Medicine, Georgetown University, Washington, DC, USA k Department of Ophthalmology, Heinrich-Heine University, Düsseldorf, Germany l Deakin Optometry, School of Medicine, Deakin University, Geelong, Australia m School of Optometry and Vision Science, UNSW Australia, Sydney, NSW, Australia article info abstract Article history: The development of novel therapies for Dry Eye Disease (DED) is formidable, and relatively few treat- Received 5 May 2017 ments evaluated have been approved for marketing.
    [Show full text]