Ep 2671584 A2

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2671584 A2 (19) TZZ _ T (11) EP 2 671 584 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.12.2013 Bulletin 2013/50 A61K 31/4706 (2006.01) A61K 31/675 (2006.01) A61K 38/04 (2006.01) A61P 9/00 (2006.01) (21) Application number: 13171506.2 (22) Date of filing: 23.04.2008 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR •Currie,Mark G. HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Sterling, MA Massachusetts 01564 (US) RO SE SI SK TR • Zimmer, Daniel P. Designated Extension States: Somerville, MA AL BA MK RS Massachusetts 02145 (US) (30) Priority: 04.05.2007 US 916257 P (74) Representative: Simpson, Tobias Rutger et al 17.10.2007 US 980573 P Mathys & Squire LLP 120 Holborn (62) Document number(s) of the earlier application(s) in London EC1N 2SQ (GB) accordance with Art. 76 EPC: 08746595.1 / 2 152 266 Remarks: This application was filed on 11-06-2013 as a (71) Applicant: Ironwood Pharmaceuticals, Inc. divisional application to the application mentioned Cambridge, MA 02141 (US) under INID code 62. (54) Compositions and methods for treating disorders associated with salt or fluid retention (57) Methods for reducing the risk of or treating a that increases anion secretion in the intestine; or c) an disorder associated with fluid and/or salt retention in a agent that both reduces sodium absorption in the intes- patient are described. The methods include administer- tine and increases anion secretion in the intestine. ing to the patient an agent selected from: a) an agent that reduces sodium absorption in the intestine; b) an agent EP 2 671 584 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 671 584 A2 Description BACKGROUND 5 [0001] Excessive retention of fluid or salt is associated with various disorders, including cardiovascular disorders such as congestive heart failure, hypertension, cardiac hypertrophy and stroke. Excessive retention of fluid or salt can also cause or be associated with renal disorders and can lead to acites build up in the abdomen, for example, in the case of liver disease. 10 SUMMARY [0002] Described herein as a method of reducing the risk of or treating a disorder associated with fluid and/or salt retention in a patient, the method comprising administering to the patient an agent selected from: a) an agent that reduces sodium absorption in the intestine; b) an agent that increases anion secretion in the intestine; or c) an agent that both 15 reduces sodium absorption in the intestine and increases anion secretion in the intestine. In certain cases the method comprises administering two or more agents selected from: a) an agent that reduces sodium absorption in the intestine; b) an agent that increases anion secretion in the intestine; or c) an agent that both reduces sodium absorption in the intestine and increases anion secretion in the intestine. In various embodiments: the agent reduces sodium absorption in the intestine; the agent increases anion secretion in the intestine; and the agent both reduces sodium absorption in 20 the intestine and increases anion secretion in the intestine. [0003] In certain embodiments of the method: the agent is selected from: a) a guanylate cyclase receptor C agonist, b) a soluble guanylate cyclase modulator (preferably an agonist of soluble guanylate cyclase), c) a prostanoid, d) a chloride channel activator, e) a 5HT4 agonist, f) a cyclic nucleotide, g) a sodium transport inhibitor, h) a laxative, i) a cystic fibrosis transmembrane conductance regulator (CTFR) modulator, j) an agent that affects cAMP levels (preferably 25 an agent the increases cAMP levels in the body or a tissue), k) a phosphodiesterase inhibitor, 1) a renin inhibitor, m) an aldosterone antagonist, n) potassium, and o) a polymer resin. In sertain embodiments the method comprises adminis- tering two or more agents selected from: a) a guanylate cyclase receptor C agonist, b) a soluble guanylate cyclase modulator (preferably an agonist of soluble guanylate cyclase), c) a prostanoid, d) a chloride channel activator, e) a 5HT4 agonist, f) a cyclic nucleotide, g) a sodium transport inhibitor, h) a laxative, i) a cystic fibrosis transmembrane 30 conductance regulator (CTFR) modulator, j) an agent that affects cAMP levels (preferably an agent the increases cAMP levels in the body or a tissue), k) a phosphodiesterase inhibitor, l) a renin inhibitor, m) an aldosterone antagonist, n) potassium, and o) a polymer resin. [0004] Invarious embodiments: the chloride channel activator islubiprostone; thesodium transport inhibitor is amiloride; the sodium transport inhibitor is an NHE3 inhibitor; the 5HT4 agonist is Zelnorm; the prostanoid is selected from: the 35 compoundrepresented by CASRegistry No. 333963-40-9, the compound represented by CASRegistry No. 136790-76-6, (-)-7-[(2R,4aR,5R,7aR)-2-(1,1-difluoropentyl)-2-hydroxy-6-oxooctahydrocyclopenta[b]pyran-5-yl]heptanoic acid; and the 13, 14-dihydro-15-keto prostaglandins E disclosed in US5284858 including 13,14- dihydro-15-keto-PGE2 alkyl ester, 13,14-dihydro-15-keto-PGE2 cycloalkyl ester; 13,14-dihydro-15-keto-PGE2 hydroxy alkyl ester, 13,14-dihydro-15-keto- PGE2 benzyl ester, 13,14- dihydro-15-keto-PGE1 alkyl ester, 13,14- dihydro-6,15-diketo-PGE1 alkyl ester, 13,14- dihydro- 40 15-keto-18-methoxy-19, 20-dinor-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-18-methoxy-PGE2 or an alkyl 2 2 ester thereof, 13,14-dihydro-15-keto-Δ -PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-20-methoxy-Δ -PGE2 or an alkyl ester thereof, 13,14- dihydro-15-keto-3R,S-methyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-3R,S- methyl-20-methoxy-PGE2 or an alkyl ester thereof, 13, 14-dihydro-15-keto-11-dehydroxy-11R-methyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-16R,S-fluoro-11-dehydroxy-11R-methyl-PGE2 or an alkyl ester thereof, 13,14-di- 45 hydro-15-keto-16R,S-hydroxy-PGE2 or an alkyl ester thereof, 13,14- dihydro-15-keto-16R,S-fluoro-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-16R,S-methyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-16,16-dimethyl- PGE2 or an alkyl ester thereof, 13,14- dihydro-15-keto-16,16-dimethyl-20-methoxy-PGE2 or an alkyl ester thereof, 13,14- dihydro-15-keto-17S-methyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-19-methy-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-20-isopropropylidene PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-20-ethyl- 50 PGE2 or an alkyl ester thereof, 13,14- dihydro-15-keto-20-ethyl-11-dehydroxy-11R-methyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15 -keto-20-n-propyl-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-20-ethyl-PGE1 or an alkyl ester thereof, 13,14-dihydro-6,15-diketo-16R,S-fluoro-PGE1 or an alkyl ester thereof, 13,14- dihydro-6,15-diketo-16R,S- fluoro-11-dehydroxy-11R-methyl-PGE1 or an alkyl ester thereof, 13,14-dihydro-6,15-diketo-16R,S-methyl-PGE1 or an alkyl ester thereof, 13,14- dihydro-6,15-diketo-16,16-dimethyl-PGE1 or an alkyl ester thereof, 13,14- dihydro-6,15-diketo- 55 19-methyl-PGE1 or an alkyl ester thereof, 13,14-dihydro-6,15-diketo-20-methyl-PGE1 or an alkyl ester thereof, 13,14- dihydro-6,15-diketo-11-dehydroxy-11R-methyl-PGE1or analkyl esterthereof, 13,14- dihydro-6,15-diketo-11-dehydroxy- 11R-hydroxymethyl PGE1 alkyl ester, 13,14-dihydro-15-keto-20-methyl-PGE1 or an alkyl ester thereof, 13,14-dihydro- 2 15-keto-Δ -PGE1 or an alkyl ester thereof, 13,14- dihydro-15-keto-16R,S-fluoro-20-methyl-PGE2 or an alkyl ester thereof, 2 EP 2 671 584 A2 13,14-dihydro-15-keto-16,16-difluoro-PGE2 or an alkyl ester thereof, 13,14-dihydro-15-keto-5,6-dehydro-20-methoxy- PGE2 or an alkyl ester thereof, and 13,14- dihydro-6,15-diketo-16R,S-fluoro-PGE1 or an alkyl ester thereof; the prostanoid is misoprostol; the prostanoid is the free acid of the compound associated with CAS registry NO. 59122-49-5; the prostanoid comprises a mixture of steroisomers; only a single isomer of a prostanoid is administered; the laxative is 5 selected from: a CCK-1 antagonist, a stimulant, a bulk-producing agent and a stool softener; the laxative is selected from dexloxiglumide, psyllium husk, docusate sodium, bisacodyl, and phenolphthalein; the polymer resin is selected from psyllium, lipid lowering polymers, nonabsorbed polymer resins, and sodium binding polymers; the lipid lowering polymer is selected from: Colesevelam, Sevalmer, Cholestyramine; the nonabsorbed polymer resin is selected from: hyaluronic acid, polycarbophil calcium, polyvinyl acetate, polyvinyl pyrrolidone, polystyrene sulfate; the sodium- binding 10 polymer is selected from: crosslinked polyvinylsulfamate polymer, N-(bis-phosphonic-ethyl) polyvinylamine polymer, poly-α-acrylic acid polymer, poly- α-fluoroacrylic acid polymer, polyvinylphosphoramidic polymer, polyvinylsulfamate pol- ymer,polyvinylsulfamate/ vinylsulfatecopolymer, polyvinylsulfatepolymer, polyvinylsulfonate polymer, polyvinylsulfonate polymer, vinylphosphonate/α-fluoroacrylic acid copolymer, vinylphosphonate/α-fluoroacrylic acid copolymer, or vinyl- phosphonate/acrylic acid copolymer; the sodium- binding polymer is administered as core- shell composition which further 15 comprises a semi- permeable shell; the semi- permeable shell comprises at least one of a poly- 11 trimethylammoniounde- cylmethacrylate polymer, a styrene-vinylpyridine polymer, 11-dimethyl-aminodecylmethacrylate/laurylmethacrylate co- polymer, or a polyallylamine/polystyrene sulfonate polymer.
Recommended publications
  • Template for Electronic Submission to ACS Journals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kingston University Research Repository Selective Methylmagnesium Chloride Mediated Acetylations of Isosorbide: A Route to Powerful Nitric Oxide Donor Furoxans Patrick Kielty,† Dennis A. Smith,† Peter Cannon,‡ Michael P. Carty,§ Michael Kennedy,† Patrick McArdle,† Richard J. Singer,‖ and Fawaz Aldabbagh*,†, ⊥ † School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland ‡ Avara Pharmaceutical Services, Shannon Industrial Estate, Shannon, Co. Clare, V14 FX09, Ireland § Biochemistry, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland ‖ Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK Present address: Department of Pharmacy, School of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK ⊥ ABSTRACT: Isosorbide was functionalized with furoxan for the first time to give adducts that release nitric oxide up to 7.5 times faster than the commercial vasodilator, isosorbide-5-mononitrate (Is5N). The synthesis was facilitated by MeMgCl-mediated selective acetylation of isosorbide or selective deacetylation of isosorbide-2,5- diacetate, which was rationalised in terms of a more stable 5- alkoxide magnesium salt using DFT. Isosorbide-furoxans are safer to handle than Is5N due to greater thermal stability. Nitric oxide (NO) is a reactive free radical with a vast array of Scheme 1. (A) Is5N and furoxan drugs (B) Protection- physiological functions,1 in cancer,2 anti-microbial deprotection of isosorbide 1 allowing selective func- processes,3 wound healing,4 and most significantly, tionalization with furoxan vasodilation.5 Clinically, nitrate ester drugs are used to effect vasodilation.
    [Show full text]
  • Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the A3 and the P2Y2 Purinergic Receptors
    Synthesis and Biological Evaluation of Purine and Pyrimidine Based Ligands for the A3 and the P2Y2 Purinergic Receptors Apr. Liesbet Cosyn Thesis submitted to the Faculty of Pharmaceutical Sciences to obtain the degree of Doctor in Pharmaceutical Sciences Promoter Prof. dr. apr. Serge Van Calenbergh Academic year 2007-2008 TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................. 3 1.1 Purinergic Receptors ................................................................................. 3 1.2 Adenosine Analogues and the Adenosine A3 Receptor ......................... 4 1.2.1 Adenosine................................................................................................. 4 1.2.2 The Adenosine Receptors: G-protein-Coupled Receptors........................ 7 1.2.3 Adenosine Receptor Subtypes and Their Signalling............................... 10 1.2.4 The Adenosine A3 Receptor ................................................................... 12 1.2.4.1 Adenosine A3 Receptor Agonists ................................................. 12 1.2.4.2 Adenosine A3 Receptor Antagonists ............................................ 16 1.2.4.3 Allosteric Modulation.................................................................... 21 1.2.4.4 Molecular Modeling of the Adenosine A3 Receptor...................... 22 1.2.4.5 The Neoceptor concept................................................................ 23 1.2.4.6 Therapeutic Potential of A3AR Agonists......................................
    [Show full text]
  • Regulation and Relevance for Chronic Lung Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Purinergic Signalling (2006) 2:399–408 DOI 10.1007/s11302-006-9001-7 ORIGINAL ARTICLE E-NTPDases in human airways: Regulation and relevance for chronic lung diseases Lauranell H. Burch & Maryse Picher Received: 11 January 2005 /Accepted: 21 December 2005 / Published online: 30 May 2006 # Springer Science + Business Media B.V. 2006 Abstract Chronic obstructive lung diseases are char- are characterized by higher rates of nucleotide elimi- acterized by the inability to prevent bacterial infection nation, azide-sensitive E-NTPDase activities and ex- and a gradual loss of lung function caused by recurrent pression. This review integrates the biphasic regulation inflammatory responses. In the past decade, numerous of airway E-NTPDases with the function of purine studies have demonstrated the importance of nucleo- signaling in lung diseases. During acute insults, a tide-mediated bacterial clearance. Their interaction transient reduction in E-NTPDase activities may be with P2 receptors on airway epithelia provides a rapid beneficial to stimulate ATP-mediated bacterial clear- Fon-and-off_ signal stimulating mucus secretion, cilia ance. In chronic lung diseases, elevating E-NTPDase beating activity and surface hydration. On the other activities may represent an attempt to prevent P2 hand, abnormally high ATP levels resulting from receptor desensitization and nucleotide-mediated lung damaged epithelia and bacterial lysis may cause lung damage. edema and exacerbate inflammatory responses. Air- way ATP concentrations are regulated by ecto nucle- Keywords apyrase . bacterial clearance . CD39 . oside triphosphate diphosphohydrolases (E-NTPDases) chronic obstructive lung diseases .
    [Show full text]
  • Nitroaromatic Antibiotics As Nitrogen Oxide Sources
    Review biomolecules Nitroaromatic Antibiotics as Nitrogen Oxide Sources Review Allison M. Rice, Yueming Long and S. Bruce King * Nitroaromatic Antibiotics as Nitrogen Oxide Sources Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; Allison M. Rice , Yueming [email protected] and S. Bruce (A.M.R.); King [email protected] * (Y.L.) * Correspondence: [email protected]; Tel.: +1-336-702-1954 Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; [email protected]: Nitroaromatic (A.M.R.); [email protected] antibiotics (Y.L.) show activity against anaerobic bacteria and parasites, finding * Correspondence: [email protected]; Tel.: +1-336-702-1954 use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the Abstract: Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding usedevelopment in the treatment of new of Heliobacter treatments pylori forinfections, these conditio tuberculosis,ns, the trichomoniasis, associated toxicity human Africanand lack of clear trypanosomiasis,mechanisms of action Chagas have disease limited and their leishmaniasis. therapeutic Despite development. this activity Nitroaro and a clearmatic need antibiotics for require thereductive development bioactivation of new treatments for activity for theseand this conditions, reductive the associatedmetabolism toxicity can convert
    [Show full text]
  • Mechanism of Action of Novel NO-Releasing Furoxan Derivatives of Aspirin in Human Platelets
    Edinburgh Research Explorer Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets Citation for published version: Turnbull, CM, Cena, C, Fruttero, R, Gasco, A, Rossi, AG & Megson, IL 2006, 'Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets', British Journal of Pharmacology, vol. 148, no. 4, pp. 517-26. https://doi.org/10.1038/sj.bjp.0706743 Digital Object Identifier (DOI): 10.1038/sj.bjp.0706743 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: British Journal of Pharmacology Publisher Rights Statement: Copyright 2006, Nature Publishing Group. OnlineOpen article General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 British Journal of Pharmacology (2006) 148, 517–526 & 2006 Nature Publishing Group All rights reserved 0007–1188/06 $30.00 www.nature.com/bjp Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets 1Catriona M. Turnbull, 2Clara Cena, 2Roberta Fruttero, 2Alberto Gasco, 3Adriano G.
    [Show full text]
  • P2X7 Receptor-Induced CD23 Shedding from B Cells Aleta Pupovac University of Wollongong, [email protected]
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2014 P2X7 receptor-induced CD23 shedding from B cells Aleta Pupovac University of Wollongong, [email protected] Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] P2X7 receptor-induced CD23 shedding from B cells A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from UNIVERSITY OF WOLLONGONG by Aleta Pupovac Bachelor of Biotechnology (Adv) (Hons) Illawarra Health and Medical Research Institute School of Biological Sciences 2014 THESIS CERTIFICATION I, Aleta Pupovac, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Aleta Pupovac 2014 i ACKNOWLEDGEMENTS I would like to thank my supervisor, Ron Sluyter, for providing me with the skills and patience to tackle science confidently in the future. Your knowledge, guidance and support were essential in the completion of this project, and have moulded me into the scientist that I always hoped to be. I will be forever grateful that you gave me the opportunity to be a part of your lab, and for your excellent supervision. A student cannot ask for a better supervisor. Also thanks to my co-supervisor Marie Ranson, for providing helpful advice over the years.
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • Beneficial Effects of Soluble Guanylyl Cyclase Stimulation and Activation in Sickle Cell Disease Are Amplified by Hydroxyurea: in Vitro and in Vivo Studies
    JPET # 264606 Title page Beneficial Effects of Soluble Guanylyl Cyclase Stimulation and Activation in Sickle Cell Disease are Amplified by Hydroxyurea: In Vitro and In Vivo Studies Ferreira Jr WA1*, Chweih H1*, Lanaro C1, Almeida CB1, Brito PL1, Gotardo EMF1, Torres L1, Miguel LI1, Franco-Penteado CF, Leonardo FC1, Garcia F1, Saad STO1, Frenette PS3, Brockschnieder D2, Costa FF1, Stasch JP2, Sandner P2,4, Conran N1. 1Hematology Centre, School of Medical Sciences, University of Campinas (UNICAMP), Brazil. 2 Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany. 3 Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA. 4 Hannover Medical School, Institute of Pharmacology, Hannover, Germany * Joint first authors 1 JPET # 264606 Running Title Page Soluble guanylyl cyclase stimulation in sickle cell disease. Corresponding author: Nicola Conran, Hemocentro, Rua Carlos Chagas, 480, Cidade Universitária, Barão Geraldo, Campinas, SP 13083-970, Brazil. E-mail: [email protected] Number of text pages: 31 Number of tables: 0 Number of figures: 3 Number of Supplementary Tables: 2 Number of Supplementary Figures: 5 Number of references: 52 Number of words in Abstract: 238 Number of words in Introduction: 750 Number of words in Discussion: 1327 NON-STANDARD ABBREVIATIONS: cGMP, cyclic guanosine monophosphate; DAMP, damage-associated molecular pattern; HbF, fetal hemoglobin; HbS, sickle hemoglobin; FN, fibronectin; HU, hydroxyurea; NO, nitric oxide; ODQ, 1H- [1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; RBC, red blood cell; SCA, sickle cell anemia; SCD, sickle cell disease; sGC, soluble guanylyl cyclase; TNF, tumor necrosis factor-α; WBC, white blood cells.
    [Show full text]
  • A Pilot Exome-Wide Association Study of Age-Related Cataract in Koreans
    Available online at www.jbr-pub.org Open Access at PubMed Central The Journal of Biomedical Research, 2016, 30(3):186-190 Original Article A pilot exome-wide association study of age-related cataract in Koreans Sang-Yong Eom1,2, Dong-Hyuk Yim1,2, Jung-Hyun Kim3, Joo-Byung Chae4, Yong-Dae Kim1,2, Heon Kim1,2, 1​Center for Farmer's Safety and Health, Chungbuk National University Hospital, Cheongju, Chungbuk 28644, Republic of Korea; 2​Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea; 3 Department of Optometry, Daejeon Health Science College, Daejeon 34504, Republic of Korea; 4 Department of Ophthalmology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea. Abstract Age-related cataract (ARC) is the most common cause of visual impairment and blindness worldwide. A previous study reported that genetic factors could explain approximately 50% of the heritability of cataract. However, a genetic predisposition to ARC and the contributing factors have not yet been elucidated in the Korean population. In this study, we assessed the influence of genetic polymorphisms on the risk of ARC in Koreans, including 156 cataract cases and 138 healthy adults. We conducted an exome-wide association study using Illumina Human Exome-12v1.2 platform to screen 244,770 single nucleotide polymorphisms (SNPs). No SNPs reached exome-wide significance level of association (P < 1×10−6). B3GNT4 rs7136356 showed the most significant association with ARC (P = 6.54×10−5). Two loci (MUC16 and P2RY2) among the top 20 ARC-associated SNPs were recognized as probably linked to cata- ractogenesis.
    [Show full text]
  • P2Y Receptor Agonists for the Treatment of Dry
    Clinical Ophthalmology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW P2Y2 receptor agonists for the treatment of dry eye disease: a review Oliver C F Lau1 Abstract: Recent advances in the understanding of dry eye disease (DED) have revealed Chameen previously unexplored targets for drug therapy. One of these drugs is diquafosol, a uridine 1,2 nucleotide analog that is an agonist of the P2Y receptor. Several randomized controlled trials Samarawickrama 2 Simon E Skalicky1–3 have demonstrated that the application of topical diquafosol significantly improves objective markers of DED such as corneal and conjunctival fluorescein staining and, in some studies, 1Sydney Eye Hospital, Sydney, NSW, Australia; 2Save Sight Institute, tear film break-up time and Schirmer test scores. However, this has been accompanied by only University of Sydney, Sydney, partial improvement in patient symptoms. Although evidence from the literature is still relatively 3 NSW, Australia; Ophthalmology limited, early studies have suggested that diquafosol has a role in the management of DED. Department, Addenbrooke’s Hospital, Cambridge, United Kingdom Additional studies would be helpful to delineate how different subgroups of DED respond to diquafosol. The therapeutic combination of diquafosol with other topical agents also warrants further investigation. Keywords: dry eye disease, meibomian gland disease, aqueous tear deficiency, diquafosol, P2Y2 agonists Introduction Dry eye disease (DED) is a complex clinical entity characterized by symptoms of discomfort and visual disturbance. It is associated with tear film instability, increased tear film osmolarity, and ocular surface inflammation.1 It has a high prevalence that, depending on the population studied, varies from 5% to 35%.2,3 DED commonly causes symptoms including foreign body sensation, dryness, irritation, itching, and light sensitivity.4 It impacts patients’ daily life and function.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
    US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds.
    [Show full text]
  • Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
    Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic
    [Show full text]