Phylogenetic Relationships and the Larval Head of the Lower Cyclorrhapha (Diptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera, Phoridae) from Iran
Archive of SID J Insect Biodivers Syst 04(3): 147–155 ISSN: 2423-8112 JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/578CCEF1-37B7-45D3-9696-82B159F75BEB New records of the scuttle flies (Diptera, Phoridae) from Iran Roya Namaki Khameneh1, Samad Khaghaninia1*, R. Henry L. Disney2 1 Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, I.R. Iran. 2 Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, U.K. ABSTRACT. The faunistic study of the family Phoridae carried out in northwestern of Iran during 2013–2017. Five species (Conicera tibialis Schmitz, Received: 1925, Dohrniphora cornuta (Bigot, 1857), Gymnophora arcuata (Meigen, 1830), 06 August, 2018 Metopina oligoneura (Mik, 1867) and Triphleba intermedia (Malloch, 1908)) are newly recorded from Iran. The genera Conicera Meigen, 1830, Dohrniphora Accepted: 14 November, 2018 Dahl, 1898, Gymnophora Macquart, 1835 and Triphleba Rondani, 1856 are reported for the first time from the country. Diagnostic characters of the Published: studied species along with their photographs are provided. 20 November, 2018 Subject Editor: Key words: Phoridae, Conicera, Dohrniphora, Gymnophora, Triphleba, Iran, New Farzaneh Kazerani records Citation: Namaki khameneh, R., Khaghaninia, S. & Disney, R.H.L. (2018) New records of the scuttle flies (Diptera, Phoridae) from Iran. Journal of Insect Biodiversity and Systematics, 4 (3), 147–155. Introduction Phoridae with about 4,000 identified insect eggs, larvae, and pupae. The adults species in more than 260 genera, is usually feed on nectar, honeydew and the considered as one of the largest families of exudates of fresh carrion and dung, Diptera (Ament & Brown, 2016). -
Arthropod IGF, Relaxin and Gonadulin, Putative Orthologs of Drosophila
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.088476; this version posted June 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Arthropod IGF, Relaxin and Gonadulin, putative 2 orthologs of Drosophila insulin-like peptides 6, 7 and 3 8, likely originated from an ancient gene triplication 4 5 6 Jan A. Veenstra1, 7 8 1 INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France 9 10 Corresponding Author: 11 Jan A. Veenstra1 12 INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 13 Pessac Cedex, France 14 Email address: [email protected] 15 16 Abstract 17 Background. Insects have several genes coding for insulin-like peptides and they have been 18 particularly well studied in Drosophila. Some of these hormones function as growth hormones 19 and are produced by the fat body and the brain. These act through a typical insulin receptor 20 tyrosine kinase. Two other Drosophila insulin-like hormones are either known or suspected to act 21 through a G-protein coupled receptor. Although insulin-related peptides are known from other 22 insect species, Drosophila insulin-like peptide 8, one that uses a G-protein coupled receptor, has 23 so far only been identified from Drosophila and other flies. However, its receptor is widespread 24 within arthropods and hence it should have orthologs. Such putative orthologs were recently 25 identified in decapods and have been called gonadulins. -
Dipterists Forum
BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel. -
Final Report 1
Sand pit for Biodiversity at Cep II quarry Researcher: Klára Řehounková Research group: Petr Bogusch, David Boukal, Milan Boukal, Lukáš Čížek, František Grycz, Petr Hesoun, Kamila Lencová, Anna Lepšová, Jan Máca, Pavel Marhoul, Klára Řehounková, Jiří Řehounek, Lenka Schmidtmayerová, Robert Tropek Březen – září 2012 Abstract We compared the effect of restoration status (technical reclamation, spontaneous succession, disturbed succession) on the communities of vascular plants and assemblages of arthropods in CEP II sand pit (T řebo ňsko region, SW part of the Czech Republic) to evaluate their biodiversity and conservation potential. We also studied the experimental restoration of psammophytic grasslands to compare the impact of two near-natural restoration methods (spontaneous and assisted succession) to establishment of target species. The sand pit comprises stages of 2 to 30 years since site abandonment with moisture gradient from wet to dry habitats. In all studied groups, i.e. vascular pants and arthropods, open spontaneously revegetated sites continuously disturbed by intensive recreation activities hosted the largest proportion of target and endangered species which occurred less in the more closed spontaneously revegetated sites and which were nearly absent in technically reclaimed sites. Out results provide clear evidence that the mosaics of spontaneously established forests habitats and open sand habitats are the most valuable stands from the conservation point of view. It has been documented that no expensive technical reclamations are needed to restore post-mining sites which can serve as secondary habitats for many endangered and declining species. The experimental restoration of rare and endangered plant communities seems to be efficient and promising method for a future large-scale restoration projects in abandoned sand pits. -
Phylogeny of Syrphidae (Diptera) Inferred from Combined Analysis of Molecular and Morphological Characters
Systematic Entomology (2003) 28, 433–450 Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters GUNILLA STA˚HLS1 , HEIKKI HIPPA2 , GRAHAM ROTHERAY3 , JYRKI MUONA1 andFRANCIS GILBERT4 1Finnish Museum of Natural History, University of Helsinki, Finland, 2Swedish Museum of Natural History, Stockholm, Sweden, 3National Museums of Scotland, Edinburgh, U.K. and 4School of Biological Sciences, Nottingham University, Nottingham, U.K. Abstract. Syrphidae (Diptera) commonly called hoverflies, includes more than 5000 species world-wide. The aim of this study was to address the systematic position of the disputed elements in the intrafamilial classification of Syrphidae, namely the monophyly of Eristalinae and the placement of Microdontini and Pipizini, as well as the position of particular genera (Nausigaster, Alipumilio, Spheginobaccha). Sequence data from nuclear 28S rRNA and mitochondrial COI genes in conjunction with larval and adult morphological characters of fifty-one syrphid taxa were analysed using optimization alignment to explore phylogenetic relationships among included taxa. A species of Platypezidae, Agathomyia unicolor, was used as outgroup, and also including one representative (Jassidophaga villosa) of the sister-group of Syrphidae, Pipunculidae. Sensitivity of the data was assessed under six different parameter values. A stability tree sum- marized the results. Microdontini, including Spheginobaccha, was placed basally, and Pipizini appeared as the sister-group to subfamily Syrphinae. The monophyly of subfamily Eristalinae was supported. The results support at least two independ- ent origins of entomophagy in syrphids, and frequent shifts between larval feeding habitats within the saprophagous eristalines. Introduction At the beginning of the last century, Syrphidae was divided into 2–20 subfamilies by different authors. -
Checklist of the Families Opetiidae and Platypezidae (Diptera) of Finland
https://helda.helsinki.fi Checklist of the families Opetiidae and Platypezidae (Diptera) of Finland Ståhls, Gunilla 2014-09-19 Ståhls , G 2014 , ' Checklist of the families Opetiidae and Platypezidae (Diptera) of Finland ' ZooKeys , no. 441 , pp. 209-212 . https://doi.org/10.3897/zookeys.441.7639 http://hdl.handle.net/10138/165337 https://doi.org/10.3897/zookeys.441.7639 Downloaded from Helda, University of Helsinki institutional repository. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Please cite the original version. A peer-reviewed open-access journal ZooKeys 441: 209–212Checklist (2014) of the families Opetiidae and Platypezidae (Diptera) of Finland 209 doi: 10.3897/zookeys.441.7639 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the families Opetiidae and Platypezidae (Diptera) of Finland Gunilla Ståhls1 1 Finnish Museum of Natural History, Zoology Unit, P.O. Box 17, FI-00014 University of Helsinki, Finland Corresponding author: Gunilla Ståhls ([email protected]) Academic editor: J. Kahanpää | Received 3 April 2014 | Accepted 11 June 2014 | Published 19 September 2014 http://zoobank.org/0FD1FB6E-6B9B-4F42-B8F3-0FDEEA15AE44 Citation: Ståhls G (2014) Checklist of the families Opetiidae and Platypezidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 209–212. doi: 10.3897/zookeys.441.7639 Abstract A checklist of the Opetiidae and Platypezidae (Diptera) recorded from Finland. Keywords Checklist, Finland, Diptera, Opetiidae, Platypezidae Introduction Opetiidae and Platypezidae are small families of small-sized flies. Platypezidae are prin- cipally forest insects, and all known larvae develop in fungi. -
Chapter 7 – Associations Between Microdontinae and Ants
Cover Page The handle http://hdl.handle.net/1887/18582 holds various files of this Leiden University dissertation. Author: Reemer, Menno Title: Unravelling a hotchpotch : phylogeny and classification of the Microdontinae (Diptera: Syrphidae) Issue Date: 2012-03-13 7 Review and phylogenetic evaluation of associations between Microdontinae (Diptera: Syrphidae) and ants (Hymeno- ptera: Formicidae) Abstract. The immature stages of hoverflies of the subfamily Microdontinae (Diptera: Syrphidae) are known to develop in ants nests, as predators of the ant brood. The present paper reviews published and unpublished records of associations of Microdontinae with ants, in order to discuss the following questions: 1. are alle Microdontinae associated with ants?; 2. are Microdontinae associated with all ants?; 3. are particular clades of Microdontinae associated with particular clades of ants? A total number of 103 records of associations between the groups are evaluated, relating to 42 species of Microdontinae belonging to 14 (sub)genera, and to 58 species of ants belonging to 23 genera and four subfamilies. Known associations are mapped onto the most recent phylogenetic hypotheses of both ants and Microdontinae. The taxa of Microdontinae found in association with ants appear to occur scattered throughout their phylogenetic tree, and one of the supposedly most basal taxa (Mixogaster) is known to be associated with ants. This suggests that associations with ants evolved early in the history of the subfamily, and have remained a predominant feature of their lifestyle. When considering the phylogeny of ants, associations with Microdontinae are only known from the subfamilies Dolichoderinae, Formicinae, Myrmicinae and Pseudomyrmecinae, which are all part of the the so-called ‘formicoid’ clade. -
Flat-Footed Fly Recording Scheme
Flat-footed Fly Recording Scheme Newsletter 4 Spring 2021 Introduction Dead insects as a food source Previous newsletters have reported low numbers of Important new information obtained in 2020 has already platypezid records in all years from 2016 to 2019, while at been reported in a note by Peter Andrews (2021). This the same time including substantial extensions to the ranges concerns observations on the activity of females of of several species and adding new data on a number of rare Agathomyia cinerea , photographed while feeding on dead species. Flat-footed flies have also been noted as sparsely insects. Members of this family are well-known to feed, recorded on Forum field meetings in these years. while running about on leaf surfaces in their characteristic In 2020, due to covid, there were no Forum field meetings, rapid jerky fashion, but it had been thought that their food and field activity by many recorders was constrained and was restricted to surface deposits such as honeydew, pollen grains and microbes. often limited to their own immediate areas. It was not therefore anticipated that many records of flat-footed flies Then Jane Hewitt made a similar observation on 6 would be achieved in the year. However, a steady stream of November, when a female of Agathomyia falleni was seen records has been forwarded to me by a stalwart band of to be feeding on a shrivelled up very small insect that was active fieldworkers, providing some unexpectedly not identifiable. She noticed that it was very keen on feeding interesting results. While more records no doubt remain to from this insect and that it kept returning to it. -
Insecta Diptera) in Freshwater (Excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel
Entomology Publications Entomology 2008 Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Rüdiger Wagner University of Kassel Miroslav Barták Czech University of Agriculture Art Borkent Salmon Arm Gregory W. Courtney Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs BoudewPart ofijn the GoBddeeiodivrisersity Commons, Biology Commons, Entomology Commons, and the TRoyerarle Bestrlgiialan a Indnstit Aquaute of Nticat uErcaol Scienlogyce Cs ommons TheSee nex tompc page forle addte bitioniblaiol agruthorapshic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/41. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Global diversity of dipteran families (Insecta Diptera) in freshwater (excluding Simulidae, Culicidae, Chironomidae, Tipulidae and Tabanidae) Abstract Today’s knowledge of worldwide species diversity of 19 families of aquatic Diptera in Continental Waters is presented. Nevertheless, we have to face for certain in most groups a restricted knowledge about distribution, ecology and systematic, -
(Diptera, Phoridae) Visiting Flowers of Cryptogorynae Crispatula (Araceae), Including New Species, in China
FRAGMENTA FAUNISTICA 63 (2): 81–118, 2020 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2020.63.2.081 Records of scuttle flies (Diptera, Phoridae) visiting flowers of Cryptogorynae crispatula (Araceae), including new species, in China R. Henry L. DISNEY Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, England; e-mail: [email protected] Abstract: The collection of the scuttle flies (Diptera, Phoridae) visiting flowers of Cryptogorynae crispatula (Araceae) caught in Yunnan, China were studied. They were identified to 24 species of which only five were known, seven species are hereby described as new to science and next 13 species cannot be named until linked to their opposite sexes. The following are described. Conicera species female YG, cannot be named until linked to its male. Dohrniphora guangchuni n. sp., Megaselia duolobata n. sp., M. excrispatula n. sp., M. interstinctus n. sp., M. leptotibiarum n. sp., M. menglaensis n. sp., M. shooklinglowae n. sp., Megaselia species Y1 female that cannot be named until linked to its male. The recognition of M. chippensis (Brues, 1911), described from a single female, is augmented. Males of 6 species (Y1-Y6) of Puliciphora Dahl, cannot be named until linked to their females and 5 species of Woodiphora Schmitz. Key words: Phoridae, China, Yunnan, new species. INTRODUCTION Low Shook Ling (Paleoecology Group, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla) caught the insects visiting flowers of Cryptogorynae crispatula (Araceae) in Yunnan, China and sent me the scuttle flies (Diptera, Phoridae) for identification. These represent 24 species of which 5 were known species, 6 are new species that are described below and 13 species that cannot be named until linked to their opposite sexes. -
Diptera): a Life History, Molecular, Morphological
The evolutionary biotogy of Conopidae (Diptera): A life history, molecular, morphological, systematic, and taxonomic approach Joel Francis Gibson B.ScHon., University of Guelph, 1999 M.Sc, Iowa State University, 2002 B.Ed., Ontario Institute for Studies in Education/University of Toronto, 2003 A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2011 Joel Francis Gibson Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de Pedition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your Tile Votre r&ference ISBN: 978-0-494-83217-2 Our file Notre reference ISBN: 978-0-494-83217-2 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. -
Cheshire Wildlife Trust
Cheshire Wildlife Trust Heteroptera and Diptera surveys on the Manchester Mosses with PANTHEON analysis by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] on behalf of Lancashire and Cheshire Wildlife Trusts Version 1.0 September 2018 Lancashire Wildlife Trust Page 1 of 35 Abstract This report describes the results of a series of surveys on the Manchester mosslands covering heteroptera (shield bugs, plant bugs and allies), craneflies, hoverflies, and a number of other fly families. Sites covered are the Holcroft Moss reserve of Cheshire Wildlife Trust and the Astley, Cadishead and Little Woolden Moss reserves of Lancashire Wildlife Trust. A full list is given of the 615 species recorded and their distribution across the four sites. This species list is interpreted in terms of feeding guilds and habitat assemblages using the PANTHEON software developed by Natural England. This shows a strong representation in the sample of species associated with shaded woodland floor and tall sward and scrub. The national assemblage of peatland species is somewhat less well represented, but includes a higher proportion of rare or scarce species. A comparison is also made with PANTHEON results for similar surveys across a similar range of habitats in the Delamere Forest. This suggests that the invertebrate diversity value of the Manchester Mosses is rather less, perhaps as a result of their fragmented geography and proximity to past and present sources of transport and industrial pollution. Introduction The Manchester Mosses comprise several areas of lowland bog or mire embedded in the flat countryside between Warrington and Manchester. They include several areas designated as SSSIs in view of the highly distinctive and nationally important habitat, such as Risley Moss, Holcroft Moss, Bedford Moss, and Astley Moss.