Microevolution of Puumala Hantavirus in Its Host, the Bank Vole (Myodes Glareolus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Levels of Gene Flow in the California Vole (Microtus Californicus) Are Consistent Across Spatial Scales," Western North American Naturalist: Vol
Western North American Naturalist Volume 70 Number 3 Article 3 10-11-2010 High levels of gene flow in the California olev (Microtus californicus) are consistent across spatial scales Rachel I. Adams Stanford University, Stanford, California, [email protected] Elizabeth A. Hadly Stanford University, Stanford, California, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Adams, Rachel I. and Hadly, Elizabeth A. (2010) "High levels of gene flow in the California vole (Microtus californicus) are consistent across spatial scales," Western North American Naturalist: Vol. 70 : No. 3 , Article 3. Available at: https://scholarsarchive.byu.edu/wnan/vol70/iss3/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 70(3), © 2010, pp. 296–311 HIGH LEVELS OF GENE FLOW IN THE CALIFORNIA VOLE (MICROTUS CALIFORNICUS) ARE CONSISTENT ACROSS SPATIAL SCALES Rachel I. Adams1,2 and Elizabeth A. Hadly1 ABSTRACT.—Gene flow links the genetic and demographic structures of species. Despite the fact that similar genetic and demographic patterns shape both local population structure and regional phylogeography, the 2 levels of population connectivity are rarely studied simultaneously. Here, we studied gene flow in the California vole (Microtus californicus), a small-bodied rodent with limited vagility but high local abundance. Within a 4.86-km2 preserve in central California, genetic diversity in 6 microsatellites was high, and Bayesian methods indicated a single genetic cluster. -
Mammals of the California Desert
MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif. -
Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L
Geographic Distribution of Hantaviruses Associated with Neotomine and Sigmodontine Rodents, Mexico Mary L. Milazzo,1 Maria N.B. Cajimat,1 Hannah E. Romo, Jose G. Estrada-Franco, L. Ignacio Iñiguez-Dávalos, Robert D. Bradley, and Charles F. Fulhorst To increase our knowledge of the geographic on the North American continent are Bayou virus, Black distribution of hantaviruses associated with neotomine or Creek Canal virus (BCCV), Choclo virus (CHOV), New sigmodontine rodents in Mexico, we tested 876 cricetid York virus, and Sin Nombre virus (SNV) (3–7). Other rodents captured in 18 Mexican states (representing at hantaviruses that are principally associated with neotomine least 44 species in the subfamily Neotominae and 10 or North American sigmodontine rodents include Carrizal species in the subfamily Sigmodontinae) for anti-hantavirus virus (CARV), Catacamas virus, El Moro Canyon virus IgG. We found antibodies against hantavirus in 35 (4.0%) rodents. Nucleotide sequence data from 5 antibody-positive (ELMCV), Huitzilac virus (HUIV), Limestone Canyon rodents indicated that Sin Nombre virus (the major cause of virus (LSCV), Montano virus (MTNV), Muleshoe virus hantavirus pulmonary syndrome [HPS] in the United States) (MULV), Playa de Oro virus, and Rio Segundo virus is enzootic in the Mexican states of Nuevo León, San Luis (RIOSV) (8–14). Potosí, Tamaulipas, and Veracruz. However, HPS has not Specifi c rodents (usually 1 or 2 closely related been reported from these states, which suggests that in species) are the principal hosts of the hantaviruses, northeastern Mexico, HPS has been confused with other for which natural host relationships have been well rapidly progressive, life-threatening respiratory diseases. -
Special Publications Museum of Texas Tech University Number 63 18 September 2014
Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J. -
Safe Harbor Agreement
SAFE HARBOR AGREEMENT FOR THE RE-INTRODUCTION OF THE AMARGOSA VOLE (Microtus californicus scirpensis), IN SHOSHONE, CALIFORNIA Prepared by U.S. Fish and Wildlife Service, Carlsbad Fish and Wildlife Office and Susan Sorrells July 7, 2020 2 Table of Contents 1.0 INTRODUCTION ............................................................................................................ 5 Purpose .................................................................................................................................... 5 Enrolled Lands and Core Area ................................................................................................ 5 Regulatory Framework ........................................................................................................... 5 SHA Standard and Background .............................................................................................. 6 Assurances Provided ............................................................................................................... 6 Relationship to Other Agreements .......................................................................................... 6 2.0 STATUS AND BACKGROUND OF AMARGOSA VOLE .......................................... 7 2.1 Status and Distribution ................................................................................................. 7 2.2 Life History and Habitat Requirements ........................................................................ 8 2.3 Threats ....................................................................................................................... -
Phylogenetic and Geographical Relationships of Hantavirus Strains in Eastern and Western Paraguay
Am. J. Trop. Med. Hyg., 75(6), 2006, pp. 1127–1134 Copyright © 2006 by The American Society of Tropical Medicine and Hygiene PHYLOGENETIC AND GEOGRAPHICAL RELATIONSHIPS OF HANTAVIRUS STRAINS IN EASTERN AND WESTERN PARAGUAY YONG KYU CHU, BROOK MILLIGAN, ROBERT D. OWEN, DOUGLAS G. GOODIN, AND COLLEEN B. JONSSON* Emerging Infectious Disease Program, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Biological Sciences, Texas Tech University, Lubbock, Texas; Department of Geography, Kansas State University, Manhattan, Kansas Abstract. Recently, we reported the discovery of several potential rodent reservoirs of hantaviruses in western (Holochilus chacarius) and eastern Paraguay (Akodon montensis, Oligoryzomys chacoensis, and O. nigripes). Compari- sons of the hantavirus S- and M-segments amplified from these four rodents revealed significant differences from each another and from other South American hantaviruses. The ALP strain from the semiarid Chaco ecoregion clustered with Leguna Negra and Rio Mamore (LN/RM), whereas the BMJ-ÑEB strain from the more humid lower Chaco ecoregion formed a clade with Oran and Bermejo. The other two strains, AAI and IP37/38, were distinct from known hantaviruses. With respect to the S-segment sequence, AAI from eastern Paraguay formed a clade with ALP/LN/RM, but its M-segment clustered with Pergamino and Maciel, suggesting a possible reassortment. AAI was found in areas -
Redalyc.Ticks Infesting Wild Small Rodents in Three Areas of the State Of
Ciência Rural ISSN: 0103-8478 [email protected] Universidade Federal de Santa Maria Brasil Fernandes Martins, Thiago; Gea Peres, Marina; Borges Costa, Francisco; Silva Bacchiega, Thais; Appolinario, Camila Michele; Azevedo de Paula Antunes, João Marcelo; Ferreira Vicente, Acácia; Megid, Jane; Bahia Labruna, Marcelo Ticks infesting wild small rodents in three areas of the state of São Paulo, Brazil Ciência Rural, vol. 46, núm. 5, mayo, 2016, pp. 871-875 Universidade Federal de Santa Maria Santa Maria, Brasil Available in: http://www.redalyc.org/articulo.oa?id=33144653018 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência Rural, Santa Maria, v.46,Ticks n.5, infesting p.871-875, wild mai, small 2016 rodents in three areas of the state of http://dx.doi.org/10.1590/0103-8478cr20150671São Paulo, Brazil. 871 ISSN 1678-4596 PARASITOLOGY Ticks infesting wild small rodents in three areas of the state of São Paulo, Brazil Carrapatos infestando pequenos roedores silvestres em três municípios do estado de São Paulo, Brasil Thiago Fernandes MartinsI* Marina Gea PeresII Francisco Borges CostaI Thais Silva BacchiegaII Camila Michele AppolinarioII João Marcelo Azevedo de Paula AntunesII Acácia Ferreira VicenteII Jane MegidII Marcelo Bahia LabrunaI ABSTRACT carrapatos, os quais foram coletados e identificados ao nível de espécie em laboratório, através de análises morfológicas (para From May to September 2011, a total of 138 wild adultos, ninfas e larvas) e por biologia molecular para confirmar rodents of the Cricetidae family were collected in the cities of estas análises, através do sequenciamento de um fragmento Anhembi, Bofete and Torre de Pedra, in São Paulo State. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Ticks Parasitizing Wild Mammals in Atlantic Forest Areas in the State of Rio De Janeiro, Brazil
Short Communication ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Braz. J. Vet. Parasitol., Jaboticabal, v. 27, n. 3, p. 409-414, july.-sept. 2018 Doi: https://doi.org/10.1590/S1984-296120180027 Ticks parasitizing wild mammals in Atlantic Forest areas in the state of Rio de Janeiro, Brazil Carrapatos parasitando mamíferos silvestres em áreas da Floresta Atlântica no estado do Rio de Janeiro, Brasil Hermes Ribeiro Luz1*; Sócrates Fraga da Costa Neto2,3; Marcelo Weksler4; Rosana Gentile3; João Luiz Horacio Faccini5 1 Departamento de Medicina Veterinária Preventiva e Saúde Animal, Escola de Medicina Veterinária e Ciência Animal, Universidade de São Paulo – USP, São Paulo, SP, Brasil 2 Programa de Pós-graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil 3 Laboratório de Biologia e Parasitologia de Mamíferos Silvestres, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz – Fiocruz, Rio de Janeiro, RJ, Brasil 4 Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, RJ, Brasil 5 Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica, RJ, Brasil Received January 3, 2018 Accepted March 7, 2018 Abstract Mammals captured in the Serra dos Órgãos National Park (PARNASO) and the Pedra Branca State Park (PBSP) between 2012 and 2015 were examined for the presence of ticks. In total, 140 mammals were examined, and 34 specimens were found to be parasitized by ticks. Didelphis aurita, Akodon montensis and Oligoryzomys nigripes were the species most parasitized. From these specimens, 146 ticks were collected, including 10 larvae. The ticks belonged to eight species: one in the genus Ixodes and seven in the genus Amblyomma. -
Hantavirus Disease Were HPS Is More Common in Late Spring and Early Summer in Seropositive in One Study in the U.K
Hantavirus Importance Hantaviruses are a large group of viruses that circulate asymptomatically in Disease rodents, insectivores and bats, but sometimes cause illnesses in humans. Some of these agents can occur in laboratory rodents or pet rats. Clinical cases in humans vary in Hantavirus Fever, severity: some hantaviruses tend to cause mild disease, typically with complete recovery; others frequently cause serious illnesses with case fatality rates of 30% or Hemorrhagic Fever with Renal higher. Hantavirus infections in people are fairly common in parts of Asia, Europe and Syndrome (HFRS), Nephropathia South America, but they seem to be less frequent in North America. Hantaviruses may Epidemica (NE), Hantavirus occasionally infect animals other than their usual hosts; however, there is currently no Pulmonary Syndrome (HPS), evidence that they cause any illnesses in these animals, with the possible exception of Hantavirus Cardiopulmonary nonhuman primates. Syndrome, Hemorrhagic Nephrosonephritis, Epidemic Etiology Hemorrhagic Fever, Korean Hantaviruses are members of the genus Orthohantavirus in the family Hantaviridae Hemorrhagic Fever and order Bunyavirales. As of 2017, 41 species of hantaviruses had officially accepted names, but there is ongoing debate about which viruses should be considered discrete species, and additional viruses have been discovered but not yet classified. Different Last Updated: September 2018 viruses tend to be associated with the two major clinical syndromes in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary (or cardiopulmonary) syndrome (HPS). However, this distinction is not absolute: viruses that are usually associated with HFRS have been infrequently linked to HPS and vice versa. A mild form of HFRS in Europe is commonly called nephropathia epidemica. -
Wildlife Ruby Lake Natillntllwildlife Refuge
I 49. 44/2: R 82/3/993 P RLE Wildlife Ruby lake NatillntllWildlife Refuge ZIMMERMAN LIBRARY UNIV. OF NEW MEXteo FEB 1 0 1994 U.S. Regional Depos1to A Refuge for Nesting and Migrating Waterfowl and Other Wildlife The Habitat Ruby Lake National Wildlife Refuge was established in The refuge, at an elevation of 6,000 feet, consists of an 1938. It encompasses 37,632 acres at the south end of extensive bulrush marsh interspersed with pockets of Ruby Valley. This land was once covered by a 200 foot open water. Fish are abundant. Islands scattered deep, 300,800-acre lake known as Franklin Lake. Today throughout provide good nesting habitat for many bird 12,000 acres of marsh remain on the refuge. Just north of species. the refuge, a 15,000-acre seasonal wetland is now referred to as Franklin Lake. Over 200 springs flow into the marsh along its west border _...)/ creating riparian habitat which is used by many songbirds, To Elko �� and Welle snipe, rail and small mammals. They also provide a water FRANKLIN source for larger mammals. With slight increases in LAKE elevation, wet meadows gradate into grasslands and sagebrush-rabbitbrush habitat. Pinon pines and juniper cover the slopes of the Ruby Mountains that rise to 11,000 feet along the west side of the refuge. Canyons provide habitat for a variety of wildlife. Rock cliffs provide raptors with nesting and perching sites. A mountainside of dead trees, home for ROAD cavity dwelling birds, was the result of a 1979 wildfire. BRESSMAN CABIN LOOP MAIN BOAT LANDING -4,__,,� ·�I! I N � 0 3 Miles 0 2 4 Kilometer� RANCH dead pinon tree General Key BIRDS bam ,wallow � Season 6 The following bird list includes 207 species observed on Sp - Spring (March through May) or near the refuge. -
Small Mammals and a Railway in the Atlantic Forest of Southern Brazil
Edge effects without habitat fragmentation? Small mammals and a railway in the Atlantic Forest of southern Brazil R ICARDO A. S. CERBONCINI,JAMES J. ROPER and F ERNANDO C. PASSOS Abstract Edge effects have been studied extensively in frag- et al., ). Edges between different habitats were once con- mented landscapes, often with conflicting findings. Edge ef- sidered beneficial for biodiversity (Leopold, ;Lay,)but fects may also be important in other situations, such as as studies focused on anthropogenic edges (Chasko & Gates, linear clearings (e.g. along roads, power lines or train ; Harris, ) their detrimental effects became apparent. tracks). We tested for responses of small mammals to a nar- Edges are abrupt transitions between habitats or ecosystems row (c. m) linear clearing created by a railway in the lar- (Yahner, ;Riesetal.,) and their effects include any gest area of Atlantic Forest in southern Brazil. Only two changes that occur as a result of that transition (Murcia, environmental variables, light intensity and train noise, ). Abrupt transitions in vegetation at edges are usually as- were greatest at the edge and decreased with distance from sociated with similarly abrupt changes in climate, with conse- the edge. Temperature differed (greater extremes and more quent impacts on plants and animals (Chasko & Gates, ; variable) only at the edge itself. The few small mammal spe- Sork, ; Palik & Murphy, ;Matlack,; Oliveira et al., cies that were only rarely captured at the edge resulted in an ) as a result of changing resource distribution (Mills et al., apparent edge-effect with respect to species richness. The ;Berg&Pärt,;Ries&Sisk,) and biotic interac- abundance of small mammals, however, was independent tions (Berg & Pärt, ; Fagan et al., ).