Classical Mechanics 220

Total Page:16

File Type:pdf, Size:1020Kb

Classical Mechanics 220 Classical Mechanics 220 Eric D'Hoker Department of Physics and Astronomy, UCLA Los Angeles, CA 90095, USA 9 November 2015 1 Contents 1 Review of Newtonian Mechanics 5 1.1 Some History . .5 1.2 Newton's laws . .6 1.3 Comments on Newton's laws . .7 1.4 Work . .8 1.5 Dissipative forces . .9 1.6 Conservative forces . 10 1.7 Velocity dependent conservative forces . 12 1.8 Charged particle in the presence of electro-magnetic fields . 14 1.9 Physical relevance of conservative forces . 15 1.10 Appendix 1: Solving the zero-curl equation . 15 2 Lagrangian Formulation of Mechanics 17 2.1 The Euler-Lagrange equations in general coordinates . 17 2.2 The action principle . 20 2.3 Variational calculus . 21 2.4 Euler-Lagrange equations from the action principle . 23 2.5 Equivalent Lagrangians . 24 2.6 Symmetry transformations and conservation laws . 24 2.7 General symmetry transformations . 26 2.8 Noether's Theorem . 28 2.9 Examples of symmetries and conserved charges . 29 2.10 Systems with constraints . 31 2.11 Holonomic versus non-holonomic constrains . 33 2.12 Lagrangian formulation for holonomic constraints . 36 2.13 Lagrangian formulation for some non-holonomic constraints . 38 2.14 Examples . 38 3 Quadratic Systems: Small Oscillations 41 3.1 Equilibrium points . 41 3.2 Mechanical stability of equilibrium points . 42 3.3 Small oscillations near a general solution . 44 3.4 Magnetic stabilization . 45 3.5 Lagrange Points . 46 3.6 Stability near the non-colinear Lagrange points . 49 2 4 Hamiltonian Formulation of Mechanics 51 4.1 Canonical position and momentum variables . 51 4.2 Derivation of the Hamilton's equations . 52 4.3 Some Examples of Hamiltonian formulation . 53 4.4 Variational Formulation of Hamilton's equations . 54 4.5 Poisson Brackets and symplectic structure . 55 4.6 Time evolution in terms of Poisson brackets . 56 4.7 Canonical transformations . 57 4.8 Symmetries and Noether's Theorem . 59 4.9 Poisson's Theorem . 59 4.10 Noether charge reproduces the symmetry transformation . 60 5 Lie groups and Lie algebras 62 5.1 Definition of a group . 62 5.2 Matrix multiplication groups . 63 5.3 Orthonormal frames and parametrization of SO(N).............. 65 5.4 Three-dimensional rotations and Euler angles . 67 5.5 Definition of a Lie group . 68 5.6 Definition of a Lie algebra . 68 5.7 Relating Lie groups and Lie algebras . 69 5.8 Symmetries of the degenerate harmonic oscillator . 70 5.9 The relation between the Lie groups SU(2) and SO(3) . 73 6 Motion of Rigid Bodies 74 6.1 Inertial and body-fixed frames . 74 6.2 Kinetic energy of a rigid body . 75 6.3 Angular momentum of a rigid body . 76 6.4 Changing frames . 77 6.5 Euler-Lagrange equations for a freely rotating rigid body . 78 6.6 Relation to a problem of geodesics on SO(N)................. 79 6.7 Solution for the maximally symmetric rigid body . 80 6.8 The three-dimensional rigid body in terms of Euler angles . 80 6.9 Euler equations . 82 6.10 Poinsot's solution to Euler's equations . 82 7 Special Relativity 84 7.1 Basic Postulates . 84 7.2 Lorentz vector and tensor notation . 86 7.3 General Lorentz vectors and tensors . 88 3 7.4 Relativistic invariance of the wave equation . 90 7.5 Relativistic invariance of Maxwell equations . 91 7.6 Relativistic kinematics . 94 7.7 Relativistic dynamics . 96 7.8 Lagrangian for a massive relativistic particle . 97 7.9 Particle collider versus fixed target experiments . 98 7.10 A physical application of time dilation . 99 8 Fluid Mechanics 100 8.1 Conservation of mass . 101 8.2 Conservation of momentum and Newton's third law . 101 8.3 Euler's equations . 103 8.4 Ideal fluids . 103 8.5 Viscous fluids . 110 9 Completely integrable systems 114 9.1 Criteria for integrability, and action-angle variables . 114 9.2 Standard examples of completely integrable systems . 114 9.3 More sophisticated integrable systems . 115 9.4 Elliptic functions . 116 9.5 Solution by Lax pair . 117 9.6 The Korteweg de Vries (or KdV) equation . 119 9.7 The KdV soliton . 119 9.8 Integrability of KdV by Lax pair . 121 10 Global properties of Hamiltonian mechanics 123 10.1 The Poincar´eRecurrence Theorem . 123 10.2 Definition of a manifold . 124 10.3 Examples . 125 10.4 Maps between manifolds . 126 10.5 Vector fields and tangent space . 127 10.6 Poisson brackets and Hamiltonian flows . 129 10.7 Stokes's theorem and grad-curl-div formulas . 130 10.8 Differential forms: informal definition . 131 10.9 Structure relations of the exterior differential algebra . 132 10.10Integration and Stokes's Theorem on forms . 134 10.11Frobenius Theorem for Pfaffian systems . 134 4 1 Review of Newtonian Mechanics A basic assumption of classical mechanics is that the system under consideration can be understood in terms of a fixed number Np of point-like objects. Each such object is labeled by an integer n = 1; ;N , has a mass m > 0, and may be characterized by a position ··· p n xn(t). The positions constitute the dynamical degrees of freedom of the system. On these objects and/or between them, certain forces may act, such as those due to gravity and electro-magnetism. The goal of classical mechanics is to determine the time-evolution of the position xn(t) due to the forces acting on body n, given a suitable set of initial conditions. A few comments are in order. The point-like nature of the objects described above is often the result of an approximation. For example, a planet may be described as a point-like object when studying its revolution around the sun. But its full volume and shape must be taken into account if we plan to send a satellite to its surface, and the planet can then no longer be approximated by a point-like object. In particular, the planet will rotate as an extended body does. This extended body may be understood in terms of smaller bodies which, in turn, may be treated as point-like. A point-like object is often referred to as a material point or a particle, even though its size may be that of a planet or a star. In contrast with quantum mechanics, classical mechanics allows simultaneous specifica- tion of both the position and the velocity (or momentum) for each of its particles. In contrast with quantum field theory, classical mechanics assumes that the number of particles is fixed, with fixed masses. In contrast with statistical mechanics, classical mechanics assumes that the positions and velocities of all particles can (in principle) be known to arbitrary accuracy. 1.1 Some History Historically, one of the greatest difficulties that needed to be overcome was to observe and describe the motion of bodies in the absence of any forces. Friction on the ground and in the air could not easily be reduced with the tools available prior to the Renaissance. It is the motion of the planets which would produce the first reliable laws of mechanics. Based on the accurate astronomical observations which Tycho Brahe (1546-1601) made with the naked eye on the positions of various planets (especially Mars), Johannes Kepler (1571- 1630) proposed his quantitative and precise mathematical laws of planetary motion. Galileo Galilei (1564-1642) investigated the motion of bodies on Earth, how they fall, how they roll on inclined planes, and how they swing in a pendulum. He demonstrated with the help of such experiments that bodies with different masses fall to earth at the same rate (ignoring air friction), and deduced the correct (quadratic) mathematical relation between height and elapsed time during such falls. He may not have been the first one to derive such laws, but 5 Galileo formulated the results in clear quantitative mathematical laws. Galileo proposed that a body in uniform motion will stay so unless acted upon by a force, and he was probably the first to do so. Of course, some care is needed in stating this law precisely as the appearance of uniform motion may change when our reference frame in which we make the observation is changed. In a so-called inertial frame, which we shall denote by , the motion of a body on which no forces act is along a straight line at constant velocity R and constant direction. A frame 0 which moves with constant velocity with respect to R R is then also inertial. But a frame 00 which accelerates with respect to is not inertial, as R R a particle in uniform motion now sweeps out a parabolic figure. Galileo stated, for the first time, that the laws of mechanics should be the same in different inertial frames, a property that is referred to as the principle of Galilean Relativity, and which we shall discuss later. Isaac Newton (1642-1727) developed the mathematics of differential and integral calculus which is ultimately needed for the complete formulation of the laws of mechanics. These laws form the foundation of mechanics, and were laid out in his Philosophae Naturalis Principia Mathematica, or simply the Principia, published in 1687. Remarkably, the mathematics used in the Principia is grounded in classical Greek geometry, supplemented with methods borrowed from infinitesimal calculus. Apparently, Newton believed that a formulation in terms of Greek geometry would enjoy more solid logical foundations than a formulation in terms of Descartes analytic geometry and his own calculus..
Recommended publications
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Conservative Forces and Potential Energy
    Program 7 / Chapter 7 Conservative forces and potential energy In the motion of a mass acted on by a conservative force the total energy in the system, which is the sum of the kinetic and potential energies, is conserved. In this section, this motion is computed numerically using the Euler–Cromer method. Theory In section 7–2 of your textbook the oscillatory motion of a mass attached to a spring is described in the context of energy conservation. Specifically, if the spring is initially compressed then the system has spring potential energy. When the mass is free to move, this potential energy is converted into kinetic energy, K = 1/2mv2. The spring then stretches past its equilibrium position, the potential energy increases again until it equals its initial value. This oscillatory motion is illustrated in Fig. 7–7 of your textbook. Consider the more complicated situation in which the force on the particle is given by F(x) = x - 4qx 3 This is a conservative force and the its potential energy is 1 2 4 U(x) = - 2 x + qx (see Fig. 7–10). From the force, we can calculate the motion using Newton’s second law. The program that you will use in this section calculates this motion and demonstrates that the total energy, E = K + U, is conserved (i.e., E remains constant). Given the force, F, on an object (of mass m), its position and velocity may be found by solving the two ordinary differential equations, dv 1 dx = F ; = v dt m dt If we replace the derivatives with their right derivative approximations, we have v(t + Dt) - v(t) 1 x(t + Dt) - x(t) = F(t) ; = v(t) Dt m Dt or v - v 1 x - x f i = F ; f i = v Dt m i Dt i where the subscripts i and f refer to the initial (time t) and final (time t+Dt) values.
    [Show full text]
  • Conservation of Energy for an Isolated System
    POTENTIAL ENERGY Often the work done on a system of two or more objects does not change the kinetic energy of the system but instead it is stored as a new type of energy called POTENTIAL ENERGY. To demonstrate this new type of energy let‟s consider the following situation. Ex. Consider lifting a block of mass „m‟ through a vertical height „h‟ by a force F. M vf=0 h M vi=0 Earth Earth System = Block F m s mg WKnet K0 (since vif v 0) WWWnet F g 0 o WFg W mghcos180 WF mgh 1 System = block + earth F system m s Earth Wnet K K 0 Wnet W F mgh WF mgh Clearly the work done by Fapp is not zero and there is no change in KE of the system. Where has the work gone into? Because recall that positive work means energy transfer into the system. Where did the energy go into? The work done by Fext must show up as an increase in the energy of the system. The work done by Fext ends up stored as POTENTIAL ENERGY (gravitational) in the Earth-Block System. This potential energy has the “potential” to be recovered in the form of kinetic energy if the block is released. 2 Ex. Spring-Mass System system N F’ K M F M F xi xf mg wKnet K0 (Since vi v f 0) w w w w w netF ' N mg F w w w net F s 11 w k22 k s22 i f 11 w w k22 k F s22 f i The work done by Fapp ends up stored as POTENTIAL ENERGY (elastic) in the Spring- Mass System.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • 1 Classical Theory and Atomistics
    1 1 Classical Theory and Atomistics Many research workers have pursued the friction law. Behind the fruitful achievements, we found enormous amounts of efforts by workers in every kind of research field. Friction research has crossed more than 500 years from its beginning to establish the law of friction, and the long story of the scientific historyoffrictionresearchisintroducedhere. 1.1 Law of Friction Coulomb’s friction law1 was established at the end of the eighteenth century [1]. Before that, from the end of the seventeenth century to the middle of the eigh- teenth century, the basis or groundwork for research had already been done by Guillaume Amontons2 [2]. The very first results in the science of friction were found in the notes and experimental sketches of Leonardo da Vinci.3 In his exper- imental notes in 1508 [3], da Vinci evaluated the effects of surface roughness on the friction force for stone and wood, and, for the first time, presented the concept of a coefficient of friction. Coulomb’s friction law is simple and sensible, and we can readily obtain it through modern experimentation. This law is easily verified with current exper- imental techniques, but during the Renaissance era in Italy, it was not easy to carry out experiments with sufficient accuracy to clearly demonstrate the uni- versality of the friction law. For that reason, 300 years of history passed after the beginning of the Italian Renaissance in the fifteenth century before the friction law was established as Coulomb’s law. The progress of industrialization in England between 1750 and 1850, which was later called the Industrial Revolution, brought about a major change in the production activities of human beings in Western society and later on a global scale.
    [Show full text]
  • Module 2: Hydrostatics
    Module 2: Hydrostatics . Hydrostatic pressure and devices: 2 lectures . Forces on surfaces: 2.5 lectures . Buoyancy, Archimedes, stability: 1.5 lectures Mech 280: Frigaard Lectures 1-2: Hydrostatic pressure . Should be able to: . Use common pressure terminology . Derive the general form for the pressure distribution in static fluid . Calculate the pressure within a constant density fluids . Calculate forces in a hydraulic press . Analyze manometers and barometers . Calculate pressure distribution in varying density fluid . Calculate pressure in fluids in rigid body motion in non-inertial frames of reference Mech 280: Frigaard Pressure . Pressure is defined as a normal force exerted by a fluid per unit area . SI Unit of pressure is N/m2, called a pascal (Pa). Since the unit Pa is too small for many pressures encountered in engineering practice, kilopascal (1 kPa = 103 Pa) and mega-pascal (1 MPa = 106 Pa) are commonly used . Other units include bar, atm, kgf/cm2, lbf/in2=psi . 1 psi = 6.695 x 103 Pa . 1 atm = 101.325 kPa = 14.696 psi . 1 bar = 100 kPa (close to atmospheric pressure) Mech 280: Frigaard Absolute, gage, and vacuum pressures . Actual pressure at a give point is called the absolute pressure . Most pressure-measuring devices are calibrated to read zero in the atmosphere. Pressure above atmospheric is called gage pressure: Pgage=Pabs - Patm . Pressure below atmospheric pressure is called vacuum pressure: Pvac=Patm - Pabs. Mech 280: Frigaard Pressure at a Point . Pressure at any point in a fluid is the same in all directions . Pressure has a magnitude, but not a specific direction, and thus it is a scalar quantity .
    [Show full text]
  • Slightly Disturbed a Mathematical Approach to Oscillations and Waves
    Slightly Disturbed A Mathematical Approach to Oscillations and Waves Brooks Thomas Lafayette College Second Edition 2017 Contents 1 Simple Harmonic Motion 4 1.1 Equilibrium, Restoring Forces, and Periodic Motion . ........... 4 1.2 Simple Harmonic Oscillator . ...... 5 1.3 Initial Conditions . ....... 8 1.4 Relation to Cirular Motion . ...... 9 1.5 Simple Harmonic Oscillators in Disguise . ....... 9 1.6 StateSpace ....................................... ....... 11 1.7 Energy in the Harmonic Oscillator . ........ 12 2 Simple Harmonic Motion 16 2.1 Motivational Example: The Motion of a Simple Pendulum . .......... 16 2.2 Approximating Functions: Taylor Series . ........... 19 2.3 Taylor Series: Applications . ........ 20 2.4 TestsofConvergence............................... .......... 21 2.5 Remainders ........................................ ...... 22 2.6 TheHarmonicApproximation. ........ 23 2.7 Applications of the Harmonic Approximation . .......... 26 3 Complex Variables 29 3.1 ComplexNumbers .................................... ...... 29 3.2 TheComplexPlane .................................... ..... 31 3.3 Complex Variables and the Simple Harmonic Oscillator . ......... 32 3.4 Where Making Things Complex Makes Them Simple: AC Circuits . ......... 33 3.5 ComplexImpedances................................. ........ 35 4 Introduction to Differential Equations 37 4.1 DifferentialEquations ................................ ........ 37 4.2 SeparationofVariables............................... ......... 39 4.3 First-Order Linear Differential Equations
    [Show full text]
  • Students' Conception and Application of Mechanical Equilibrium Through Their Sketches
    Paper ID #17998 Students’ Conception and Application of Mechanical Equilibrium Through Their Sketches Ms. Nicole Johnson, University of Illinois, Urbana-Champaign Nicole received her B.S. in Engineering Physics at the Colorado School of Mines (CSM) in May 2013. She is currently working towards a PhD in Materials Science and Engineering at the University of Illinois at Urbana-Champaign (UIUC) under Professor Angus Rockett and Geoffrey Herman. Her research is a mixture between understanding defect behavior in solar cells and student learning in Materials Science. Outside of research she helps plan the Girls Learning About Materials (GLAM) summer camp for high school girls at UIUC. Dr. Geoffrey L. Herman, University of Illinois, Urbana-Champaign Dr. Geoffrey L. Herman is a teaching assistant professor with the Deprartment of Computer Science at the University of Illinois at Urbana-Champaign. He also has a courtesy appointment as a research assis- tant professor with the Department of Curriculum & Instruction. He earned his Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign as a Mavis Future Faculty Fellow and conducted postdoctoral research with Ruth Streveler in the School of Engineering Educa- tion at Purdue University. His research interests include creating systems for sustainable improvement in engineering education, conceptual change and development in engineering students, and change in fac- ulty beliefs about teaching and learning. He serves as the Publications Chair for the ASEE Educational Research and Methods Division. c American Society for Engineering Education, 2017 Students’ Conception and Application of Mechanical Equilibrium Through Their Sketches 1. Introduction and Relevant Literature Sketching is central to engineering practice, especially design[1]–[4].
    [Show full text]
  • PHYS2100: Hamiltonian Dynamics and Chaos
    PHYS2100: Hamiltonian dynamics and chaos M. J. Davis September 2006 Chapter 1 Introduction Lecturer: Dr Matthew Davis. Room: 6-403 (Physics Annexe, ARC Centre of Excellence for Quantum-Atom Optics) Phone: (334) 69824 email: [email protected] Office hours: Friday 8-10am, or by appointment. Useful texts Rasband: Chaotic dynamics of nonlinear systems. Q172.5.C45 R37 1990. • Percival and Richards: Introduction to dynamics. QA614.8 P47 1982. • Baker and Gollub: Chaotic dynamics: an introduction. QA862 .P4 B35 1996. • Gleick: Chaos: making a new science. Q172.5.C45 G54 1998. • Abramowitz and Stegun, editors: Handbook of mathematical functions: with formulas, graphs, and• mathematical tables. QA47.L8 1975 The lecture notes will be complete: However you can only improve your understanding by reading more. We will begin this section of the course with a brief reminder of a few essential conncepts from the first part of the course taught by Dr Karen Dancer. 1.1 Basics A mechanical system is known as conservative if F dr = 0. (1.1) I · Frictional or dissipative systems do not satisfy Eq. (1.1). Using vector analysis it can be shown that Eq. (1.1) implies that there exists a potential function 1 such that F = V (r). (1.2) −∇ for some V (r). We will assume that conservative systems have time-independent potentials. A holonomic constraint is a constraint written in terms of an equality e.g. r = a, a> 0. (1.3) | | A non-holonomic constraint is written as an inequality e.g. r a. | | ≥ 1.2 Lagrangian mechanics For a mechanical system of N particles with k holonomic constraints, there are a total of 3N k degrees of freedom.
    [Show full text]
  • 1 Review Before First Test Physical Mechanics Fall 2000 Newton's Laws
    Review before first test Physical Mechanics Fall 2000 Newton's Laws – You should be able to state these laws using both words and equations. The 2nd law most important for meteorology. Second law: net force = mass × acceleration Note that it is the net force – all forces acting on the object have to be taken into account – remember the gravity in one of your homework problem? Inertial and non-inertial reference frame – in which reference frame are the Newton's Law valid? Can Newton's Law be used in a non-inertial reference frame? Anything needs to be done to do so? In equation form, the second law is F = m a where a is the acceleration rate. dV a = dt where V is the velocity defined as dx V = . dt x is the coordinate of the objection, and is a function of time t. F = ma can have the following forms: dVdx2 mFmF==and . dtdt 2 Momentum, momentum theorem, impulse For an object with non-constant mass, the more accurate way of expressing the second law is 1 dPd()mVdæödx º==Fand ç÷mF dtdtdtèødt which says that net force = rate of change of momentum where Pº mV is the definition of momentum. The above is the differential form of momentum theorem. The integral form of momentum theorem is t2 P21-P=ºFdt Impulse (6) òt1 which says Impulse from the net force (F × Dt) = change in momentum Note that the change in momentum does not require displacement. The impulse can be applied to an object before an appreciable displacement occurs.
    [Show full text]
  • On the Development of Optimization Theory
    The American Mathematical Monthly pp ON THE DEVELOPMENT OF OPTIMIZATION THEORY Andras Prekopa Intro duction Farkass famous pap er of b ecame a principal reference for linear inequalities after the publication of the pap er of Kuhn and Tucker Nonlinear Programming in In that pap er Farkass fundamental theorem on linear inequalities was used to derive necessary conditions for optimality for the nonlinear programming problem The results obtained led to a rapid development of nonlinear optimization theory The work of John containing similar but weaker results for optimality published in has b een generally known but it was not until a few years ago that Karushs work of b ecame widely known although essentially the same result was obtained by Kuhn and Tucker in In this pap er we call attention to some imp ortantwork done in the last century and b efore We show that fundamental ideas ab out the necessary optimality conditions for nonlinear optimization sub ject to inequality constraints can b e found in pap ers byFourier Cournot and Farkas as well as by Gauss Ostrogradsky and Hamel To start to describ e the early development of optimization theory it is very helpful to lo ok at the rst two sentences in Farkass pap er The natural and systematic treatment of analytical mechanics has to have as its background the inequalit y principle of virtual displacements rst formulated byFourier Andras Prekopa received his PhD in at the University of Budap est under the leadership of A Renyi He was Assistant Professor and later Asso ciate Professor
    [Show full text]