PHYSICS 149: Lecture 15

Total Page:16

File Type:pdf, Size:1020Kb

PHYSICS 149: Lecture 15 PHYSICS 149: Lecture 15 • Chapter 6: Conservation of Energy – 6.3 Kinetic Energy – 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus orbits Saturn at a distance 4D. What is the ratio of the periods of their orbits? A) Tm/Te = 1/8 T23∝ r 2 ⎛⎞ 3 B) Tm/Te =1/4= 1/4 Tm ⎛⎞D ⎜⎟= ⎜⎟ ⎝⎠TDE ⎝⎠4 C) Tm/Te = 1/2 ⎛⎞T 11 D) T /T =2= 2 ⎜⎟m = = m e ⎝⎠TE 64 8 Lecture 15 Purdue University, Physics 149 2 ILQ 2 A pendulum bob swings back and forth along a circular path. Does the tension in the string do any work on the bob? Does gravity do work on the bob? A) only tension does work B) both do work C) neither do work D) only gravity does work Lecture 15 Purdue University, Physics 149 3 Energy • Energy is “conserved” meaning it can not be created nor destroyed – Can change form – Can be transferred • Total Energy of an isolated system does not change with time • Forms – Kinetic Energy Motion – Potential Energy Stored – Heat – Mass (E=mc2) • Units: Joules = kg m2 /s/ s2 Lecture 15 Purdue University, Physics 149 4 Definition of “Work” in Physics • Work is a scalar quantity (not a vector quantity). • Units: J (Joule), N⋅m, kg⋅m2/s2, etc. – Unit conversion: 1 J = 1N1 N⋅m = 1kg1 kg⋅m2/s2 • Work is denoted by W (not to be confused by weight W). Lecture 15 Purdue University, Physics 149 5 Total Work • When several forces act on an object, the “total” work is the sum of the work done by each force individually: Lecture 15 Purdue University, Physics 149 6 ILQ 1 You are towing a car up a hill with constant velocity. The work done on the car by the normal force is: A) positive B) negative C) zero FN V T Normal force is perpendicular to direction of W disp lacemen t, so work is zero. Lecture 15 Purdue University, Physics 149 7 ILQ 2 You are towing a car up a hill with constant velocity. The work done on the car by the gravitational force is: A) positive B) negative C) zero FN V T Gravity is pushing against the direction of W motion so it is negative. Lecture 15 Purdue University, Physics 149 8 ILQ 3 You are towing a car up a hill with constant velocity. The work done on the car by the tension force is: A) positive B) negative C) zero FN V T The force of tension is in the same direction as W the motion of the car, making the work positive. Lecture 15 Purdue University, Physics 149 9 ILQ 4 You are towing a car up a hill with constant velocity. The total work done on the car by all forces is: A) positive B) negative C) zero FN V T The total work done is positive because the car is moving up the hill. (Not quite!) W 2 2 W=KEf-KEi=(0.5mvf ) - (0.5mvi ). Because the final and initial velocities are the same, there is no change in kinetic energy, and therefore no total work is done. Lecture 15 Purdue University, Physics 149 10 Problem A box is pulled up a rough (μ > 0) incline by a rope- pulley-weight arrangement as shown below. How many forces are doing (non-zero) work on the box? A) 0 B) 1 C) 2 D) 3 E) 4 Lecture 15 Purdue University, Physics 149 11 Solution Draw FBD of box: N v T z Consider direction of motion of the box z Any force not perpendicular to the motion will do work: f N does no work (perp. to v) T does positive work mg f does negative work 3f3 forces do work mg does negative work Lecture 15 Purdue University, Physics 149 12 Example: Block with Friction • A block is sliding on a surface with an initial speed of 5 m/s. If the coefficient of kinetic friction between the block and table is 0.4, how far does the block travel before stopping? y N y-direction: FFma=ma f N-mg = 0 x N = mg mg Work W = Δ K 2 2 WN = 0 -μmg Δx = ½ m (vf –v0 ) 2 Wmg = 0 -μg Δx=½x = ½ (0 – v0 ) 2 Wf = f Δx cos(180) μg Δx = ½ v0 2 = -μmg Δx Δx = ½ v0 / μg 5 m/s = 313.1 meters Lecture 15 Purdue University, Physics 149 13 Kinetic Energy: Motion • Apply constant force along x-direction to a point particle m. W = Fx Δx 1 = m ax Δx 2 2 recall:axΔx = (vx − vx0 ) 2 2 = ½ m (vf –v0 ) 2 • Work changes ½ m v2 • Define Kinetic Energy K=½mvK = ½ m v2 WkWork-Kine tic Energy W = Δ K For Point Particles Theorem Lecture 15 Purdue University, Physics 149 14 Translational Kinetic Energy • When an object of mass m is moving with speed v (the maggy),jnitude of instantaneous velocity), the object’s “translational kinetic energy” is defined as follows: • Kinetic energy is a scalar quantity. • Units: J, N ⋅m, kg ⋅m2/s2, etc. • Kinetic energy is denoted by K. • Translational kinetic energy means the total work done on the object to accelerate it to that speed starting from rest. • Translational kinetic energy is often called the “kinetic energy” if it is clearly distinguished from the rotational energy or internal energy. Lecture 15 Purdue University, Physics 149 15 Work - Kinetic Energy Theorem 1 1 = K − K = mv2 − mv2 f i 2 f 2 i • The work done on an object by the “net” force (whether the net force is constant or variable) is equal to the change in the kinetic energy. • Or, the “total” work done on the object is equal to the change in the kinetic energy. Lecture 15 Purdue University, Physics 149 16 ILQ Compare the kinetic energy of two balls: Ball 1: mass m thrown with speed 2v Ball 2: mass 2m thrown with speed v A) K1 = 4K2 B) K1 = K2 C) 2K1 = K2 D) K1 = 2K2 Lecture 15 Purdue University, Physics 149 17 Work Done by Gravity 1 •Examppple 1: Drop ball Y = h Wg = (mg)(s)cosθ i s = h S 0 Wg = mghcos(0 ) = mgh mg y Δy = yf-yi = -h Yf = 0 x Wg = -mgΔy Lecture 15 Purdue University, Physics 149 18 Work Done by Gravity 2 •Examppple 2: Toss ball up Y = h Wg = (mg)(s)cosθ i s = h S W = mghcos(1800) = -mgh mg g y Δy = yf-yi = +h Y = 0 f x Wg = -mgΔy Lecture 15 Purdue University, Physics 149 19 Work Done by Gravity 3 •Example 3: Slide block down incline Wg = (mg)(s)cosθ s = h/cosθ h θ Wg = mg(h/cosθ)cosθ mg S Wg = mgh Δy = yf-yi = -h Wg = -mgΔy Lecture 15 Purdue University, Physics 149 20 Work Done by Gravity • Depends only on initial and final height! • Wg = -mg(yf - yi)=) = -mgΔy – Independent of path – If you end up where you began, Wg =0= 0 – Note: can do work “against” gravity, then get gravity to do work back. – Define: Potential Energy…… We call this a “Conservative Force” because we can define a “Potential Energy ” to go with it. Lecture 15 Purdue University, Physics 149 21 Work Done by Gravity • Question: Does the work done by gravity depend on the path taken? θ mg Δr Left Case: Wgrav = F⋅Δr⋅cosθ = mg⋅|Δy|⋅cos0° = mg|Δy| Middle Case: Wgrav = F⋅Δr⋅cosθ = mg|Δy| (because Δr⋅cosθ = |Δy|) Right Case: Wgrav = mg|Δy| (because each segment can be treated like the middle case) • Answer: The work done by gravity is independent of path–that is, the work depends only on the initial and final positions (|Δy|). • This kind of force is called “conservative force.” Lecture 15 Purdue University, Physics 149 22 Potential (stored) Energy • “Stored” gravitational energy can be converted to kinetic energy -m g Δy= ΔK 0 = ΔK + m g Δy define Ug = mgy 0 = ΔK + ΔUg W = ΔK ΔU = -WC • Works for any CONSERVATIVE force Gravity Ug = m g y 2 Spring Us = 1/2 k x NOT friction Lecture 15 Purdue University, Physics 149 23 Potential Only change in potential energy is important Lecture 15 Purdue University, Physics 149 24 What is Potential Energy? • An object is thrown up vertically, and it reaches top. Assume no air resistance. The work done by gravity (near the surface of Earth) is W =F= F⋅Δr⋅cosθ =mg= mg⋅Δy⋅cos180° = –mgΔy grav vf=0 In this problem, gravity is the only force. Thus, Wttltotal = Wgrav = –mgΔy According to work-energy theorem, 2 2 Wtotal = –mgΔy = –½mvi (because ½mvf =0) 2 vi That is, the initial kinetic energy (Ki = ½mvi ) has been “stored” in (or transformed into) the form of mgΔy at the top. And, it has the “potential” to do work (or to become kinetic energy). • Stored energy due to the interaction of an object with something else (in this case, gravity) that can easily be recovered as kinetic energy is called potential energy. Lecture 15 Purdue University, Physics 149 25 Definition of Potential Energy • The change in potential energy is equal to the negative of the work done by the conservative forces. – Potential energy can be defined only for the conservative forces. For the non-conservative forces, potential energy can not be defined in the first place. – There is no way to calculate the absolute value of the potential energy. Only the change in potential energy is important. – The choice of the zero point of potential energy is arbitrary.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Capacitance and Dielectrics
    Chapter 24 Capacitance and Dielectrics PowerPoint® Lectures for University Physics, Twelfth Edition – Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Goals for Chapter 24 • To consider capacitors and capacitance • To study the use of capacitors in series and capacitors in parallel • To determine the energy in a capacitor • To examine dielectrics and see how different dielectrics lead to differences in capacitance Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley How to Accomplish these goals: Read the chapter Study this PowerPoint Presentation Do the homework: 11, 13, 15, 39, 41, 45, 71 Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Introduction • When flash devices made the “big switch” from bulbs and flashcubes to early designs of electronic flash devices, you could use a camera and actually hear a high-pitched whine as the “flash charged up” for your next photo opportunity. • The person in the picture must have done something worthy of a picture. Just think of all those electrons moving on camera flash capacitors! Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Keep charges apart and you get capacitance Any two charges insulated from each other form a capacitor. When we say that a capacitor has a charge Q or that charge Q is stored in the capacitor, we mean that the conductor at higher potential has charge +Q and at lower potential has charge –Q. When the capacitor is fully charged the potential difference across it is the same as the vab that charged it.
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Conservative Forces and Potential Energy
    Program 7 / Chapter 7 Conservative forces and potential energy In the motion of a mass acted on by a conservative force the total energy in the system, which is the sum of the kinetic and potential energies, is conserved. In this section, this motion is computed numerically using the Euler–Cromer method. Theory In section 7–2 of your textbook the oscillatory motion of a mass attached to a spring is described in the context of energy conservation. Specifically, if the spring is initially compressed then the system has spring potential energy. When the mass is free to move, this potential energy is converted into kinetic energy, K = 1/2mv2. The spring then stretches past its equilibrium position, the potential energy increases again until it equals its initial value. This oscillatory motion is illustrated in Fig. 7–7 of your textbook. Consider the more complicated situation in which the force on the particle is given by F(x) = x - 4qx 3 This is a conservative force and the its potential energy is 1 2 4 U(x) = - 2 x + qx (see Fig. 7–10). From the force, we can calculate the motion using Newton’s second law. The program that you will use in this section calculates this motion and demonstrates that the total energy, E = K + U, is conserved (i.e., E remains constant). Given the force, F, on an object (of mass m), its position and velocity may be found by solving the two ordinary differential equations, dv 1 dx = F ; = v dt m dt If we replace the derivatives with their right derivative approximations, we have v(t + Dt) - v(t) 1 x(t + Dt) - x(t) = F(t) ; = v(t) Dt m Dt or v - v 1 x - x f i = F ; f i = v Dt m i Dt i where the subscripts i and f refer to the initial (time t) and final (time t+Dt) values.
    [Show full text]
  • THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
    GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P.
    [Show full text]
  • Conservation of Energy for an Isolated System
    POTENTIAL ENERGY Often the work done on a system of two or more objects does not change the kinetic energy of the system but instead it is stored as a new type of energy called POTENTIAL ENERGY. To demonstrate this new type of energy let‟s consider the following situation. Ex. Consider lifting a block of mass „m‟ through a vertical height „h‟ by a force F. M vf=0 h M vi=0 Earth Earth System = Block F m s mg WKnet K0 (since vif v 0) WWWnet F g 0 o WFg W mghcos180 WF mgh 1 System = block + earth F system m s Earth Wnet K K 0 Wnet W F mgh WF mgh Clearly the work done by Fapp is not zero and there is no change in KE of the system. Where has the work gone into? Because recall that positive work means energy transfer into the system. Where did the energy go into? The work done by Fext must show up as an increase in the energy of the system. The work done by Fext ends up stored as POTENTIAL ENERGY (gravitational) in the Earth-Block System. This potential energy has the “potential” to be recovered in the form of kinetic energy if the block is released. 2 Ex. Spring-Mass System system N F’ K M F M F xi xf mg wKnet K0 (Since vi v f 0) w w w w w netF ' N mg F w w w net F s 11 w k22 k s22 i f 11 w w k22 k F s22 f i The work done by Fapp ends up stored as POTENTIAL ENERGY (elastic) in the Spring- Mass System.
    [Show full text]
  • Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1
    Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1 D. L. Evans2, Gary L. Gray3, Francesco Costanzo4, Phillip Cornwell5, Brian Self6 Introduction: As pointed out by a rich body of research literature, including the three video case studies, Lessons from Thin Air, Private Universe, and, particularly, Can We Believe Our Eyes?, students subjected to traditional instruction in math, science and engineering often do not adequately resolve the misconceptions that they either bring to a subject or develop while studying a subject. These misconceptions, sometimes referred to as alternative views or student views of basic concepts because they make sense to the student, block the establishment of connections between basic concepts, connections which are necessary for understanding the macroconceptions that build on the basics. That is, the misconceptions of basic phenomena hinder the learning of further material that relies on understanding these concepts. The literature on misconceptions includes the field of particle mechanics, but does not include rigid body mechanics. For example, it has been established7 "that … commonsense beliefs about motion and force are incompatible with Newtonian concepts in most respects…" It is also known that replacing these "commonsense beliefs" with concepts aligned with modern thinking on science is extremely difficult to accomplish8. But a proper approach to accomplishing this replacement must begin with understanding what the misconceptions are, progress to being able to diagnose them, and eventually, reach the point whereby instructional approaches are developed for addressing them. In high school, college and university physics, research has led to the development of an assessment instrument called the Force Concept Inventory9 (FCI) that is now available for measuring the success of instruction in breaking these student misconceptions.
    [Show full text]
  • Students' Depictions of Quantum Mechanics
    Students’ depictions of quantum mechanics: a contemporary review and some implications for research and teaching Johan Falk January 2007 Dissertation for the degree of Licentiate of Philosophy in Physics within the specialization Physics Education Research Uppsala University, 2007 Abstract This thesis presents a comprehensive review of research into students’ depic- tions of quantum mechanics. A taxonomy to describe and compare quantum mechanics education research is presented, and this taxonomy is used to highlight the foci of prior research. A brief history of quantum mechanics education research is also presented. Research implications of the review are discussed, and several areas for future research are proposed. In particular, this thesis highlights the need for investigations into what interpretations of quantum mechanics are employed in teaching, and that classical physics – in particular the classical particle model – appears to be a common theme in students’ inappropriate depictions of quantum mechanics. Two future research projects are presented in detail: one concerning inter- pretations of quantum mechanics, the other concerning students’ depictions of the quantum mechanical wave function. This thesis also discusses teaching implications of the review. This is done both through a discussion on how Paper 1 can be used as a resource for lecturers and through a number of teaching suggestions based on a merging of the contents of the review and personal teaching experience. List of papers and conference presentations Falk, J & Linder, C. (2005). Towards a concept inventory in quantum mechanics. Presentation at the Physics Education Research Conference, Salt Lake City, Utah, August 2005. Falk, J., Linder, C., & Lippmann Kung, R. (in review, 2007).
    [Show full text]
  • Force and Motion
    Force and motion Science teaching unit Disclaimer The Department for Children, Schools and Families wishes to make it clear that the Department and its agents accept no responsibility for the actual content of any materials suggested as information sources in this publication, whether these are in the form of printed publications or on a website. In these materials icons, logos, software products and websites are used for contextual and practical reasons. Their use should not be interpreted as an endorsement of particular companies or their products. The websites referred to in these materials existed at the time of going to print. Please check all website references carefully to see if they have changed and substitute other references where appropriate. Force and motion First published in 2008 Ref: 00094-2008DVD-EN The National Strategies | Secondary 1 Force and motion Contents Force and motion 3 Lift-off activity: Remember forces? 7 Lesson 1: Identifying and representing forces 12 Lesson 2: Representing motion – distance/time/speed 18 Lesson 3: Representing motion – speed and acceleration 27 Lesson 4: Linking force and motion 49 Lesson 5: Investigating motion 66 © Crown copyright 2008 00094-2008DVD-EN The National Strategies | Secondary 3 Force and motion Force and motion Background This teaching sequence bridges from Key Stage 3 to Key Stage 4. It links to the Secondary National Strategy Framework for science yearly learning objectives and provides coverage of parts of the QCA Programme of Study for science. The overall aim of the sequence is for pupils to review and refine their ideas about forces from Key Stage 3, to develop a meaningful understanding of ways of representing motion (graphically and through calculation) and to make the links between different kinds of motion and forces acting.
    [Show full text]
  • 6. Non-Inertial Frames
    6. Non-Inertial Frames We stated, long ago, that inertial frames provide the setting for Newtonian mechanics. But what if you, one day, find yourself in a frame that is not inertial? For example, suppose that every 24 hours you happen to spin around an axis which is 2500 miles away. What would you feel? Or what if every year you spin around an axis 36 million miles away? Would that have any e↵ect on your everyday life? In this section we will discuss what Newton’s equations of motion look like in non- inertial frames. Just as there are many ways that an animal can be not a dog, so there are many ways in which a reference frame can be non-inertial. Here we will just consider one type: reference frames that rotate. We’ll start with some basic concepts. 6.1 Rotating Frames Let’s start with the inertial frame S drawn in the figure z=z with coordinate axes x, y and z.Ourgoalistounderstand the motion of particles as seen in a non-inertial frame S0, with axes x , y and z , which is rotating with respect to S. 0 0 0 y y We’ll denote the angle between the x-axis of S and the x0- axis of S as ✓.SinceS is rotating, we clearly have ✓ = ✓(t) x 0 0 θ and ✓˙ =0. 6 x Our first task is to find a way to describe the rotation of Figure 31: the axes. For this, we can use the angular velocity vector ! that we introduced in the last section to describe the motion of particles.
    [Show full text]
  • 1 Classical Theory and Atomistics
    1 1 Classical Theory and Atomistics Many research workers have pursued the friction law. Behind the fruitful achievements, we found enormous amounts of efforts by workers in every kind of research field. Friction research has crossed more than 500 years from its beginning to establish the law of friction, and the long story of the scientific historyoffrictionresearchisintroducedhere. 1.1 Law of Friction Coulomb’s friction law1 was established at the end of the eighteenth century [1]. Before that, from the end of the seventeenth century to the middle of the eigh- teenth century, the basis or groundwork for research had already been done by Guillaume Amontons2 [2]. The very first results in the science of friction were found in the notes and experimental sketches of Leonardo da Vinci.3 In his exper- imental notes in 1508 [3], da Vinci evaluated the effects of surface roughness on the friction force for stone and wood, and, for the first time, presented the concept of a coefficient of friction. Coulomb’s friction law is simple and sensible, and we can readily obtain it through modern experimentation. This law is easily verified with current exper- imental techniques, but during the Renaissance era in Italy, it was not easy to carry out experiments with sufficient accuracy to clearly demonstrate the uni- versality of the friction law. For that reason, 300 years of history passed after the beginning of the Italian Renaissance in the fifteenth century before the friction law was established as Coulomb’s law. The progress of industrialization in England between 1750 and 1850, which was later called the Industrial Revolution, brought about a major change in the production activities of human beings in Western society and later on a global scale.
    [Show full text]