On the Development of Optimization Theory

Total Page:16

File Type:pdf, Size:1020Kb

On the Development of Optimization Theory The American Mathematical Monthly pp ON THE DEVELOPMENT OF OPTIMIZATION THEORY Andras Prekopa Intro duction Farkass famous pap er of b ecame a principal reference for linear inequalities after the publication of the pap er of Kuhn and Tucker Nonlinear Programming in In that pap er Farkass fundamental theorem on linear inequalities was used to derive necessary conditions for optimality for the nonlinear programming problem The results obtained led to a rapid development of nonlinear optimization theory The work of John containing similar but weaker results for optimality published in has b een generally known but it was not until a few years ago that Karushs work of b ecame widely known although essentially the same result was obtained by Kuhn and Tucker in In this pap er we call attention to some imp ortantwork done in the last century and b efore We show that fundamental ideas ab out the necessary optimality conditions for nonlinear optimization sub ject to inequality constraints can b e found in pap ers byFourier Cournot and Farkas as well as by Gauss Ostrogradsky and Hamel To start to describ e the early development of optimization theory it is very helpful to lo ok at the rst two sentences in Farkass pap er The natural and systematic treatment of analytical mechanics has to have as its background the inequalit y principle of virtual displacements rst formulated byFourier Andras Prekopa received his PhD in at the University of Budap est under the leadership of A Renyi He was Assistant Professor and later Asso ciate Professor of Probability Theory at the same university Since he has held a professorship of mathematics at the Technical University of Budap est He is also head of the Applied Mathematics Department at the Computer and Automation Institute of the Hungarian Academy of Sciences He is a corresp onding memb er of the Hungarian Academy of Sciences the National Academy of Engineering of Mexico memb er of the ISI and Fellow of the Econometric So ciety His main interests are in Probability Statistics and Op erations Research including applicati on in engineering design water resources electrical engineering economics and natural sciences This pap er was prepared while the author was visiting the Mathematics ResearchCenter of the Universityof Wisconsin Madi son Readers who are not familiar with the sub ject whose history is discussed in this article should consult Pourciaus article in this Monthly Editors and later by Gauss The p ossibilityofsuch a treatment requires however some knowledge of homogeneous linear inequalities that maybesaidtohave b een entirely missing up to now We see that Farkas had a denite reason for developing the theory of linear inequalities He was Professor of Theoretical Physics at the University of Kolozsvar We can certainly assume that he himself had already applied his inequality theorem to the problem of mechanical equilibrium In fact he rep orted rst on the applications of the mechanical principle of Fourier at the session of the Hungarian AcademyheldonDecemb er This was published later in Hungarian and in German We shall analyze this pap er in more detail in further sections We present here however a brief summary of the problem and the principal result The metho d of Lagrange for nding extrema of functions sub ject to equality constraints was published in in his famous b o ok Mecanique Analytique as a to ol for nding the stable equilibrium state of a mechanical system In the case when a p otential exists the Lagrangian problem can b e formulated in the following manner minimize g x sub ject to g x i m i where the ob jective function is the p otential The case of inequality constraints was rst investigated in byFourier If a p otential exists then Fouriers problem is minimize g x sub ject to g x i m i Assuming that the constraining and the ob jective functions are dierentiable and some regularity conditions hold the Lagrangian necessary condition for the equilibriu m states that at the minimizing p oint x the gradient rg x can b e expressed as a suitable linear combination of the gradients rg x i m i For Fouriers problem the necessary condition for equilibrium was proved byFarkas in and This condition formulated without pro of for sp ecial cases by Cournot in and for the general case by Ostrogradsky in is that at the minimizing p oint x the gradient rg x can b e expressed as a linear combination with nonnegative co ecients of those gradients rg x whose corresp onding constraints hold i with equalityatx Figure illustrates the situation The constraints restricting a mass p ointareve x plane coincides with the halfspaces Cho osing the co ordinate system so that the x plane of the ground the p otential corresp onding to the gravitational force is given bythe wellknown formula mg x provided x is small as compared to the radius of the earth At the equilibrium p oint x four constraints hold with equality and the cone generated by their negative gradients contains the vector of the gravitational force x ∗ Figure The mass p oint is in stable equilibrium at x the vector of the gravitational force is in the cone generated by the negatives of the gradients of the constraining functions at x Nowwe need to say a few words ab out those mechanical principles which played an imp ortant role in the development of optimization theory On the Principles of Mechanical Equilibr iu m The principle of virtual work was enunciated by Johann Bernoulli in It app eared rst in a b o ok byVarignon in the same year Let us quote Lagrange I pp The principle of virtual velo city can b e given the following general form Ifasystemofanynumb er of b o dies or p oints on eachofwhichany forces act is in equilibrium and one gives the system some small displacement on the basis of which eachpointmoves an innitesimal distance that will express its virtual velo city the sum of the forces eachmultiplied by the distance moved by the corresp onding p oint in the direction of the force will always b e equal to zero if innitesimal displacements in the direction of the forces are taken as p ositive and those in the opp osite direction negative John Bernoulli is the rst as far as I know who observed this great general form of the principle of virtual velo city and its usefulness for the solution of the problems of Statics One can see this in one of his Letters to Varignon dated whichVarignon placed at the b eginning of the ninth Section of his New Mechanics a Section whichis entirely devoted to showing by means of dierent applications the truth and the use of the principle in question This principle was considered by Lagrange as an axiom of Mechanics On page of the same work we read In this law lies what is generally called the principle of virtual velo city whichhas b een recognized for a long time as the fundamental principle of equilibrium as we have describ ed it in the preceding Section and we can consequentlyconsideritasa kind of an axiom of Mechanics For the case of a conservative system of forces ie when the forces are given as nega tive partial derivatives of a scalar function the principle rst enunciated by Courtivron applies Concerning this Lagrange writes the following I p which yields a further principle of Statics namely that out of all congurations that are successively assumed by the system the one in which it has the greatest or the smallest kinetic energy is also that in whichitwould have to b e placed in order for it to remain in equilibrium See Courtivron Memoires de lAcademie des Sciences of and Lagrange gave sucient conditions that the p otential takes its minimum As Bertrand remarked his pro of was incomplete and Dirichlet later gave a correct pro of The mechanical principle of Fourier was rst published in in his pap er Memoires sur la Statique This concerns the case of inequality constraints Fark as remarked p that the declaration of the inequality principle is not the main contribution of the pap er It has the subtitle Contenantlademonstration du princip e des vitesses virtuelles This very general pro of however has not b een accepted see eg thus the main merit of the pap er is still contrary ot Farkass remark the statementofthe inequality principle We quote from page of Fouriers pap er As it frequently happ ens that the p oints of the system are only constrained by xed obstacles without b eing attached to them it is evident that there are p ossible displacements that do not satisfy the equations of constraint one also sees that for these displacements the moment of the resulting forces is necessarily p ositive since the direction of these forces has to b e orthogonal to the resisting surfaces Thus the sum of the moments of the applied forces is p ositive for all displacements of this kind but it is imp ossible to displace a solid b o dy that is in equilibrium so that the total moment of the applied forces will b e negative Finally if one considers the resistances as forces whichprovide us as weknow with the means of estimating these resistances the b o dy can b e considered free and the sum of the moments is zero for all p ossible displacements The moment of the forces P Q R acting on a mechanical system is dened as the sum of scalar pro ducts Pp Q q R r where p q r are variations of the displacements The Bernoulli principle declares to b e equal to zero while the Fourier principle declares to b e less than or equal to zero in case of equilibrium Fourier was using the uxion as it turns out from other parts of his
Recommended publications
  • Module 2: Hydrostatics
    Module 2: Hydrostatics . Hydrostatic pressure and devices: 2 lectures . Forces on surfaces: 2.5 lectures . Buoyancy, Archimedes, stability: 1.5 lectures Mech 280: Frigaard Lectures 1-2: Hydrostatic pressure . Should be able to: . Use common pressure terminology . Derive the general form for the pressure distribution in static fluid . Calculate the pressure within a constant density fluids . Calculate forces in a hydraulic press . Analyze manometers and barometers . Calculate pressure distribution in varying density fluid . Calculate pressure in fluids in rigid body motion in non-inertial frames of reference Mech 280: Frigaard Pressure . Pressure is defined as a normal force exerted by a fluid per unit area . SI Unit of pressure is N/m2, called a pascal (Pa). Since the unit Pa is too small for many pressures encountered in engineering practice, kilopascal (1 kPa = 103 Pa) and mega-pascal (1 MPa = 106 Pa) are commonly used . Other units include bar, atm, kgf/cm2, lbf/in2=psi . 1 psi = 6.695 x 103 Pa . 1 atm = 101.325 kPa = 14.696 psi . 1 bar = 100 kPa (close to atmospheric pressure) Mech 280: Frigaard Absolute, gage, and vacuum pressures . Actual pressure at a give point is called the absolute pressure . Most pressure-measuring devices are calibrated to read zero in the atmosphere. Pressure above atmospheric is called gage pressure: Pgage=Pabs - Patm . Pressure below atmospheric pressure is called vacuum pressure: Pvac=Patm - Pabs. Mech 280: Frigaard Pressure at a Point . Pressure at any point in a fluid is the same in all directions . Pressure has a magnitude, but not a specific direction, and thus it is a scalar quantity .
    [Show full text]
  • Slightly Disturbed a Mathematical Approach to Oscillations and Waves
    Slightly Disturbed A Mathematical Approach to Oscillations and Waves Brooks Thomas Lafayette College Second Edition 2017 Contents 1 Simple Harmonic Motion 4 1.1 Equilibrium, Restoring Forces, and Periodic Motion . ........... 4 1.2 Simple Harmonic Oscillator . ...... 5 1.3 Initial Conditions . ....... 8 1.4 Relation to Cirular Motion . ...... 9 1.5 Simple Harmonic Oscillators in Disguise . ....... 9 1.6 StateSpace ....................................... ....... 11 1.7 Energy in the Harmonic Oscillator . ........ 12 2 Simple Harmonic Motion 16 2.1 Motivational Example: The Motion of a Simple Pendulum . .......... 16 2.2 Approximating Functions: Taylor Series . ........... 19 2.3 Taylor Series: Applications . ........ 20 2.4 TestsofConvergence............................... .......... 21 2.5 Remainders ........................................ ...... 22 2.6 TheHarmonicApproximation. ........ 23 2.7 Applications of the Harmonic Approximation . .......... 26 3 Complex Variables 29 3.1 ComplexNumbers .................................... ...... 29 3.2 TheComplexPlane .................................... ..... 31 3.3 Complex Variables and the Simple Harmonic Oscillator . ......... 32 3.4 Where Making Things Complex Makes Them Simple: AC Circuits . ......... 33 3.5 ComplexImpedances................................. ........ 35 4 Introduction to Differential Equations 37 4.1 DifferentialEquations ................................ ........ 37 4.2 SeparationofVariables............................... ......... 39 4.3 First-Order Linear Differential Equations
    [Show full text]
  • Students' Conception and Application of Mechanical Equilibrium Through Their Sketches
    Paper ID #17998 Students’ Conception and Application of Mechanical Equilibrium Through Their Sketches Ms. Nicole Johnson, University of Illinois, Urbana-Champaign Nicole received her B.S. in Engineering Physics at the Colorado School of Mines (CSM) in May 2013. She is currently working towards a PhD in Materials Science and Engineering at the University of Illinois at Urbana-Champaign (UIUC) under Professor Angus Rockett and Geoffrey Herman. Her research is a mixture between understanding defect behavior in solar cells and student learning in Materials Science. Outside of research she helps plan the Girls Learning About Materials (GLAM) summer camp for high school girls at UIUC. Dr. Geoffrey L. Herman, University of Illinois, Urbana-Champaign Dr. Geoffrey L. Herman is a teaching assistant professor with the Deprartment of Computer Science at the University of Illinois at Urbana-Champaign. He also has a courtesy appointment as a research assis- tant professor with the Department of Curriculum & Instruction. He earned his Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign as a Mavis Future Faculty Fellow and conducted postdoctoral research with Ruth Streveler in the School of Engineering Educa- tion at Purdue University. His research interests include creating systems for sustainable improvement in engineering education, conceptual change and development in engineering students, and change in fac- ulty beliefs about teaching and learning. He serves as the Publications Chair for the ASEE Educational Research and Methods Division. c American Society for Engineering Education, 2017 Students’ Conception and Application of Mechanical Equilibrium Through Their Sketches 1. Introduction and Relevant Literature Sketching is central to engineering practice, especially design[1]–[4].
    [Show full text]
  • PHYS2100: Hamiltonian Dynamics and Chaos
    PHYS2100: Hamiltonian dynamics and chaos M. J. Davis September 2006 Chapter 1 Introduction Lecturer: Dr Matthew Davis. Room: 6-403 (Physics Annexe, ARC Centre of Excellence for Quantum-Atom Optics) Phone: (334) 69824 email: [email protected] Office hours: Friday 8-10am, or by appointment. Useful texts Rasband: Chaotic dynamics of nonlinear systems. Q172.5.C45 R37 1990. • Percival and Richards: Introduction to dynamics. QA614.8 P47 1982. • Baker and Gollub: Chaotic dynamics: an introduction. QA862 .P4 B35 1996. • Gleick: Chaos: making a new science. Q172.5.C45 G54 1998. • Abramowitz and Stegun, editors: Handbook of mathematical functions: with formulas, graphs, and• mathematical tables. QA47.L8 1975 The lecture notes will be complete: However you can only improve your understanding by reading more. We will begin this section of the course with a brief reminder of a few essential conncepts from the first part of the course taught by Dr Karen Dancer. 1.1 Basics A mechanical system is known as conservative if F dr = 0. (1.1) I · Frictional or dissipative systems do not satisfy Eq. (1.1). Using vector analysis it can be shown that Eq. (1.1) implies that there exists a potential function 1 such that F = V (r). (1.2) −∇ for some V (r). We will assume that conservative systems have time-independent potentials. A holonomic constraint is a constraint written in terms of an equality e.g. r = a, a> 0. (1.3) | | A non-holonomic constraint is written as an inequality e.g. r a. | | ≥ 1.2 Lagrangian mechanics For a mechanical system of N particles with k holonomic constraints, there are a total of 3N k degrees of freedom.
    [Show full text]
  • Arxiv:2104.05789V1 [Physics.Class-Ph]
    Thermal Radiation Equilibrium: (Nonrelativistic) Classical Mechanics versus (Relativistic) Classical Electrodynamics Timothy H. Boyer Department of Physics, City College of the City University of New York, New York, New York 10031 Abstract Physics students continue to be taught the erroneous idea that classical physics leads inevitably to energy equipartition, and hence to the Rayleigh-Jeans law for thermal radiation equilibrium. Actually, energy equipartition is appropriate only for nonrelativistic classical mechanics, but has only limited relevance for a relativistic theory such as classical electrodynamics. In this article, we discuss harmonic-oscillator thermal equilibrium from three different perspectives. First, we contrast the thermal equilibrium of nonrelativistic mechanical oscillators (where point collisions are allowed and frequency is irrelevant) with the equilibrium of relativistic radiation modes (where frequency is crucial). The Rayleigh-Jeans law appears from applying a dipole-radiation approx- imation to impose the nonrelativistic mechanical equilibrium on the radiation spectrum. In this discussion, we note the possibility of zero-point energy for relativistic radiation, which possibility does not arise for nonrelativistic classical-mechanical systems. Second, we turn to a simple electro- magnetic model of a harmonic oscillator and show that the oscillator is fully in radiation equilibrium (which involves all radiation multipoles, dipole, quadrupole, etc.) with classical electromagnetic zero-point radiation, but is not in equilibrium with the Rayleigh-Jeans spectrum. Finally, we discuss the contrast between the flexibility of nonrelativistic mechanics with its arbitrary poten- tial functions allowing separate scalings for length, time, and energy, with the sharply-controlled behavior of relativistic classical electrodynamics with its single scaling connecting together the arXiv:2104.05789v1 [physics.class-ph] 12 Apr 2021 scales for length, time, and energy.
    [Show full text]
  • Hydrodynamic Description of the Adiabatic Piston
    Hydrodynamic description of the adiabatic piston M. Malek Mansoura, Alejandro L. Garciab and F. Barasc (a) Universite Libre de Bruxelles - 1050 Brussels, Belgium (b) San Jose State University, Dept. Physics, San Jose CA, USA (c) Universit´e de Bourgogne, LRRS, F - 21078 Dijon Cedex, France (Dated: November 19, 2005) A closed macroscopic equation for the motion of the two-dimensional adiabatic piston is derived from standard hydrodynamics. It predicts a damped oscillatory motion of the piston towards a final rest position, which depends on the initial state. In the limit of large piston mass, the solution of this equation is in quantitative agreement with the results obtained from both hard disk molecular dynamics and hydrodynamics. The explicit form of the basic characteristics of the piston’s dynamics, such as the period of oscillations and the relaxation time, are derived. The limitations of the theory’s validity, in terms of the main system parameters, are established. PACS numbers: 05.70.Ln, 05.40.-a I. INTRODUCTION Consider an isolated cylinder with two compartments, separated by a piston. The piston is free to move without friction along the axis of the cylinder and it has a zero heat conductivity, hence its designation as the adiabatic piston. This construction, first introduced by Callen [1], became widely known after Feynman discussed it in his famous lecture series [2]. Since then it has attracted considerable attention [3–5]. For a sufficiently large piston mass, the following scenario describes the evolution of the system [6, 7]. Starting from a nonequilibrium configuration (i.e., different pressures in each compartment) the piston performs a damped oscillatory motion.
    [Show full text]
  • Laboratory Manual Physics 166, 167, 168, 169
    Laboratory Manual Physics 166, 167, 168, 169 Lab manual, part 1 For PHY 166 and 168 students Department of Physics and Astronomy HERBERT LEHMAN COLLEGE Spring 2018 TABLE OF CONTENTS Writing a laboratory report ............................................................................................................................... 1 Introduction: Measurement and uncertainty ................................................................................................. 3 Introduction: Units and conversions ............................................................................................................ 11 Experiment 1: Density .................................................................................................................................... 12 Experiment 2: Acceleration of a Freely Falling Object .............................................................................. 17 Experiment 3: Static Equilibrium .................................................................................................................. 22 Experiment 4: Newton’s Second Law .......................................................................................................... 27 Experiment 5: Conservation Laws in Collisions ......................................................................................... 33 Experiment 6: The Ballistic Pendulum ......................................................................................................... 41 Experiment 7: Rotational Equilibrium ........................................................................................................
    [Show full text]
  • Classical Mechanics January 2012
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 THE CITY UNIVERSITY OF NEW YORK First Examination for PhD Candidates in Physics Analytical Dynamics Summer 2010 Do two of the following three problems. Start each problem on a new page. Indicate clearly which two problems you choose to solve. If you do not indicate which problems you wish to be graded, only the first two problems will be graded. Put your identification number on each page. 1. A particle moves without friction on the axially symmetric surface given by 1 z = br2, x = r cos φ, y = r sin φ 2 where b > 0 is constant and z is the vertical direction. The particle is subject to a homogeneous gravitational force in z-direction given by −mg where g is the gravitational acceleration. (a) (2 points) Write down the Lagrangian for the system in terms of the generalized coordinates r and φ. (b) (3 points) Write down the equations of motion. (c) (5 points) Find the Hamiltonian of the system. (d) (5 points) Assume that the particle is moving in a circular orbit at height z = a. Obtain its energy and angular momentum in terms of a, b, g. (e) (10 points) The particle in the horizontal orbit is poked downwards slightly. Obtain the frequency of oscillation about the unperturbed orbit for a very small oscillation amplitude. 2. Use relativistic dynamics to solve the following problem: A particle of rest mass m and initial velocity v0 along the x-axis is subject after t = 0 to a constant force F acting in the y-direction.
    [Show full text]
  • Classical Mechanics 220
    Classical Mechanics 220 Eric D'Hoker Department of Physics and Astronomy, UCLA Los Angeles, CA 90095, USA 9 November 2015 1 Contents 1 Review of Newtonian Mechanics 5 1.1 Some History . .5 1.2 Newton's laws . .6 1.3 Comments on Newton's laws . .7 1.4 Work . .8 1.5 Dissipative forces . .9 1.6 Conservative forces . 10 1.7 Velocity dependent conservative forces . 12 1.8 Charged particle in the presence of electro-magnetic fields . 14 1.9 Physical relevance of conservative forces . 15 1.10 Appendix 1: Solving the zero-curl equation . 15 2 Lagrangian Formulation of Mechanics 17 2.1 The Euler-Lagrange equations in general coordinates . 17 2.2 The action principle . 20 2.3 Variational calculus . 21 2.4 Euler-Lagrange equations from the action principle . 23 2.5 Equivalent Lagrangians . 24 2.6 Symmetry transformations and conservation laws . 24 2.7 General symmetry transformations . 26 2.8 Noether's Theorem . 28 2.9 Examples of symmetries and conserved charges . 29 2.10 Systems with constraints . 31 2.11 Holonomic versus non-holonomic constrains . 33 2.12 Lagrangian formulation for holonomic constraints . 36 2.13 Lagrangian formulation for some non-holonomic constraints . 38 2.14 Examples . 38 3 Quadratic Systems: Small Oscillations 41 3.1 Equilibrium points . 41 3.2 Mechanical stability of equilibrium points . 42 3.3 Small oscillations near a general solution . 44 3.4 Magnetic stabilization . 45 3.5 Lagrange Points . 46 3.6 Stability near the non-colinear Lagrange points . 49 2 4 Hamiltonian Formulation of Mechanics 51 4.1 Canonical position and momentum variables .
    [Show full text]
  • Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics
    entropy Article Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics Michal Pavelka 1,* ID , Václav Klika 2 ID and Miroslav Grmela 3 1 Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic 2 Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Prague, Czech Republic; vaclav.klika@fjfi.cvut.cz 3 École Polytechnique de Montréal, C.P.6079 suc. Centre-ville, Montréal, QC H3C 3A7, Canada; [email protected] * Correspondence: [email protected]; Tel.: +420-22191-3248 Received: 11 April 2018; Accepted: 8 June 2018; Published: 12 June 2018 Abstract: Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction. Keywords: Landau damping; entropy; non-equilibrium thermodynamics; Ehrenfest reduction 1. Introduction Dynamics of self-interacting gas is well described by the Vlasov equation, ¶ f (t, r, p) p ¶ f (t, r, p) ¶ f = − · − F( f (t, r, p)) · , (1) ¶t m ¶r ¶p where m is the mass of one particle and f (t, r, p) is the one-particle distribution function on phase space and F is the force exerted on the gas from outside or by the gas itself.
    [Show full text]
  • Deterministic Motion of the Controversial Piston in The
    Deterministic motion of the controversial piston in the thermodynamic limit Christian Gruber and S´everine Pache Institut de Physique Th´eorique, Ecole Polytechnique F´ed´erale de Lausanne, CH-1015 Lausanne, Switzerland Annick Lesne Laboratoire de Physique Th´eorique des Liquides, Universit´ePierre et Marie Curie, Case courrier 121, 4 Place Jussieu, 75252 Paris Cedex 05, France (November 1, 2018) We consider the evolution of a system composed of N non-interacting point particles of mass m in a cylindrical container divided into two regions by a movable adiabatic wall (the adiabatic piston). We study the thermodynamic limit for the piston where the area A of the cross-section, the mass M of the piston, and the number N of particles go to infinity keeping A/M and N/M fixed. The length of the container is a fixed parameter which can be either finite or infinite. In this thermodynamic limit we show that the motion of the piston is deterministic and the evolution is adiabatic. Moreover if the length of the container is infinite, we show that the piston evolves toward a stationary state with velocity approximately proportional to the pressure difference. If the length of the container is finite, introducing a simplifying assumption we show that the system evolves with either weak or strong damping toward a well-defined state of mechanical equilibrium where the pressures are the same, but the temperatures different. Numerical simulations are presented to illustrate possible evolutions and to check the validity of the assumption. Key Words: Liouville equation, adiabatic, piston, equilibrium, damping. 1.
    [Show full text]
  • Dynamics of a Relativistic Particle in Discrete Mechanics
    Dynamics of a Relativistic Particle in Discrete Mechanics Jean-Paul Caltagirone Université de Bordeaux Institut de Mécanique et d’Ingéniérie Département TREFLE, UMR CNRS n° 5295 16 Avenue Pey-Berland, 33607 Pessac Cedex [email protected] Abstract The study of the evolution of the dynamics of a massive or massless particle shows that in special relativity theory, the energy is not conserved. From the law of evolution of the velocity over time of a particle subjected to a constant acceleration, it is possible to calculate the total energy acquired by this particle during its movement when its velocity tends towards the celerity of light. The energy transferred to the particle in relativistic mechanics overestimates the theoretical value. Discrete mechanics applied to this same problem makes it possible to show that the movement reflects that of Newtonian mechanics at low velocity, to obtain a velocity which tends well towards the celerity of the medium when the time increases, but also to conserve the energy at its theoretical value. This consistent behavior is due to the proposed physical analysis based on the compressible nature of light propagation. Keywords: Discrete Mechanics, Special Relativity, Lorentz transformation, Hodge-Helmholtz decomposition, Relativistic particle 1 Introduction The limitation of the velocity of a material medium or of a particle, with or without mass, to the celerity of light was introduced by H.A. Lorentz at the end of the 19th century. H. Poincaré gave an interpretation in 1904 based on the increase in inertia with velocity, but this limitation is attributed today to some purely cinematic reasons.
    [Show full text]