Oncogenic Parallels in Alzheimer Disease

Total Page:16

File Type:pdf, Size:1020Kb

Oncogenic Parallels in Alzheimer Disease ONCOGENIC PARALLELS IN ALZHEIMER DISEASE by ARUN K. RAINA Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisors Dr. Mark A. Smith & Dr. Xiongwei Zhu Department of Pathology Case Western Reserve University Janurary 2005 Copyright © 2005 by Arun K. Raina All rights reserved ii CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ARUN K. RAINA candidate for the Ph.D. degree *. (signed)___George Perry___________________________ (chair of the committee) ____Mark A. Smith__________________________ ____Xiongwei Zhu___________________________ ____Robert B. Petersen__________________________ ____David Boothman__________________________ (date) ____________________ *We also certify that written approval has been obtained for any proprietary material contained therein. iii Dedication To Bhairavah Uma, Autar, Arvind and P iv Table of Contents List of Tables 7 List of Figures 8 Acknowledgements 11 Abbreviations 12 Abstract 16 Chapter 1 Introduction 18 1.1 Historical 18 1.2 Definition of Dementias 19 1.3 Epidemiology of AD 19 1.4 Pathology of AD 19 a. Neurofibrillary Tangles 20 b. Senile Plaques 22 1.5 Clinical Features of AD 22 1.6 Etiopathogenesis of AD 23 a. Age 23 b. Genetics 24 i. Amyloid β Protien Precursor (AβPP) 24 ii. Presenilins 1 and 2 25 iii. ApoE 25 c. Oxidative Stress 27 d. Cell Cycle and AD 28 1 Chapter 2 Oxidative Stress in AD 30 2.1 Introduction 30 a. Oxidative Stress in AD 30 b. Oxidative Events and Apoptosis in AD 32 c. Oxidative and Cell Cycle Events in AD 33 d. Oxidative Stress - An Adaptation in AD? 34 e. Oxidative Relevance to Lesions 35 f. Neuroprotection Within Vulnerable Neurons in AD 37 2.2 Experimental Hypothesis 37 2.3 Methods and Materials 40 a. Tissue Section Preparation 40 b. Antibodies/Protein Preparations 40 c. Immunocytochemistry 41 2.4 Results 42 a. NQO1 42 b. Bleomycin Hydrolase 42 2.5 Discussion 43 a. NQO1 43 b. Bleomycin Hydrolase 45 2.6 Conclusions 46 2.7 Relevant Publications 53 2 Chapter 3 Cell Cycle Dysfunction in AD 57 3.1 Introduction 57 a. The Cell Cycle and Control Mechanisms 57 b. Reappearance of Cell Cycle Markers in AD 59 c. Association of the Mitotic Phenotype with AD Neuropathology 60 3.2 Experimental Hypothesis 63 3.3 Methods and Materials 63 a. Tissue section preparation 63 b. Immunocytochemistry 64 c. Immunoblots 65 3.4 Results 65 a. Mrg 15 65 b. CARB 66 c. P27 67 3.5 Discussion 69 a. Mrg 15 69 b. CARB 70 c. P27 73 3.6 Conclusions 75 3.7 Relevant Publications 92 3 Chapter 4 Apoptotic Avoidance as a Feature in AD 94 4.1 Introduction 94 a. Programmed Cell Death and Apoptosis - Basic Concepts 94 b. Apoptotic Avoidance in AD 96 4.2 Experimental Hypothesis 98 4.3 Methods and Materials 99 a. Tissue Section Preparation 99 b. Immunocytochemistry 100 c. Antibodies 100 d. Adsorption Experiments 101 e. Immunoblotting and Immunodotting 101 f. Electron Microscopy 103 g. Cells 103 h. Determination of Cell Death 104 i. Transfection and Selection 104 j. RT-PCR 105 4.4 Results 105 a. Upstream Caspases 105 b. Downstream Caspases 106 c. Bcl-w 106 4.5 Discussion 110 a. Caspases 110 b. Bcl-w 113 4 4.6 Conclusions 116 4.7 Relevant Publications 125 Chapter 5 Oncogenic Parallels in AD and Conclusions 127 5.1 Introduction 127 a. Oxidative Stress, AD and Oncogenesis 127 b. Dysmitotic Mechansisms, AD and Oncogenesis 128 c. Loss of Apoptosis, AD and Oncogenesis 129 5.2 Experimental Hypothesis 131 5.3 Methods and Materials 133 a. Tissue Section Preparation 133 b. Immunocytochemistry 133 c. Immunoblots 135 5.4 Results 135 a. ADAM 135 b. BRCA-1 137 c. Phospho-retinoblastoma (pRb) 138 5.5 Discussion 138 a. ADAM 138 b. BRCA-1 141 c. Phospho-retinoblastoma (pRb) 144 5.6 Overall Conclusions 146 5.7 Future Directions 148 5 a. Apoptotic Avoidance 148 b. Functional Consequences of BRCA-1 Misexpression in Post- Mitotic Neurons 149 5.8 Relevant Publications 163 Bibliography 164 6 List of Tables Table 2.1 48 Quantitative comparison of NQO1 immunoreactivity in AD and control cases. Table 3.1 77 Cell cycle markers that are seen in AD Table 3.2 78 The AD phenotype resembles a mitotic phenotype. Table 5.1 150 BRCA-1 (Ab-1) immunoreactive AD cases and respective predispositional factors. Table 5.2 151 Antisera to Rb phosphorylational sites that immunoreacts with AD neuropathology. 7 List of Figures Figure 2.1 49 NQO1 in AD. Figure 2.2 50 Immunocytochemical localization of BH. Figure 2.3 51 Immunoreactivity of BH-absorption analysis. Figure 2.4 52 NQO1 and its role in AD. Figure 3.1 79 Cell cycle control overview. Figure 3.2A 80 The G1-S checkpoint control. Figure 3.2B 81 Cell-cycle related proteins: overlapping functions. Figure 3.3 82 Mrg 15 – Role in cell cycle. Figure 3.4 83 Mrg 15 immunocytochemistry. Figure 3.5. 84 Western analysis of Mrg 15. Figure 3.6 85 Immunocytochemical localization of CARB. Figure 3.7 86 CARB immunocytochemistry: Absorption studies. Figure 3.8 87 CARB immunoblot analysis. Figure 3.9 88 p27 immunocytochemistry. 8 Figure 3.10 89 p27/τ overlap. Figure 3.11 90 p27 immunocytochemistry: absorption studies. Figure 3.12 91 p27 quantification. Figure 4.1 117 An overview of the apoptotic process. Figure 4.2 118 Caspase 8 in AD. Figure 4.3 119 Caspase 3 in AD. Figure 4.4 120 Bcl-w immunocytochemistry. Figure 4.5 121 Bcl-w electron microscopy. Figure 4.6 122 Bcl-w immunoblots. Figure 4.7 123 Effect of Aβ on Bcl-w. Figure 4.8 124 Bcl-w transfection. Figure 5.1 152 Parallels between AD and oncogenesis. Figure 5.2 153 Immunocytochemistry of ADAMs 1 and 2 in AD Figure 5.3 154 Immunocytochemistry of ADAMs 1 and 2 in controls Figure 5.4 155 Immunocytochemistry of ADAMs 1 and 2: Adsorption studies 9 Figure 5.5 156 Immunoblot analysis of ADAMs 1 and 2 Figure 5.6 157 BRCA-1 immunocytochemistry Figure 5.7 158 BRCA-1 immunoblot analysis Figure 5.8 159 BRCA-1 is absent from control NFT Figure 5.9 160 Phospho-retinoblastoma immunocytochemistry Figure 5.10 161 Effects of BRCA-1 overexpression – Assays Figure 5.11 162 Effects of BRCA-1 overexpression – JNK/ERK studies 10 Acknowledgments This work would not be possible if it were not for close support from many people on a daily basis. I would like to offer my heartfelt appreciation to all of them for taking the time and giving the effort to make all of this possible. I would like to thank Mark A. Smith, my mentor, for opening the window of science for me and allowing me to have fun in science. I would also like to thank Xiongwei Zhu and George Perry for the constant support in both scientific and nonscientific matters. I have truly enjoyed the teaching that I was offered. Additionally, I would like to thank Peggy Harris for her showing me how to do my first experiment and for her constant support over the years. I would also like to thank Sandi Siedlak for her help throughout these years. Of course without Beth Kumar and her efficient help in so many areas I would be quite handicapped. I have truly enjoyed their help, support, and friendship. I have great pleasure in knowing and working with my colleagues, Hyoung-gon Lee, Mike Marlatt, Gemma Casadesus, Kate Webber, and others that have worked in the lab. I am also indebted to my committee members, David Boothman and Robert B. Petersen. Finally, I would especially like to thank Catherine A. Rottkamp for her immense help throughout my studies and for being a consummate friend. 11 Abbreviations 8OHG 8-hydroxyguanosine AD Alzheimer disease ADRDA Alzheimer disease and Related Disorders Association AGE Advanced glycation end products ApoE Apolipoprotein E ATP Adenosine triphosphate Aβ Amyloid beta AβPP Amyloid beta protein precursor bFGF Basic fibroblast growth factor BH Bleomycin hydrolase BRCA1 Breast cancer gene 1 CAK CDK activating kinase CARB CIP 1 regulator of cyclin B CDK Cyclin dependent kinase CERAD Consortium to Establish a Registry for Alzheimer's Disease CKI CDK inhibitor CNS Central Nervous System CSF Cerebrospinal fluid DAB Diaminobenzadine DCS Donor Calf Serum DHFR Dihydrofolate reductase DSB Double strand breaks 12 ECM Extracellular matrix EDTA Ethylenediaminetetraacetic Acid EEG Electroencephalography EGFR Epidermal growth factor receptors G6PD Glucose 6 phosphate dehydrogenase GSH Glutathione GSHPx Glutathione peroxidase GSSG-R Reduced Glutathione GST-NQO1 Glutathione S transferase NQO1 HAT Histone acetyltransferase HNE Hydroxynonenal HO-1 Heme Oxygenase-1 HPG Hypothalamic-pituitary-gonadal IAP Inhibitor of apoptosis protein JNK Jun N-terminal kinase LDH Lactate dehydrogenase LDL Low Density Lipopprotein MCI Mild Cognitive Impairment MEKK Mitogen-activated protein kinase kinase kinase MMP Matrix metalloproteinases MORF Mortality factor 4 MRG MORF4-Related Gene on chromosome 15 MRI Magnetic Resonance Imaging 13 NAD Nicotinamide Adenine Dinucleotide NADP Nicotinamide adenine dinucleotide phosphate NADPH Nicotinamide adenine dinucleotide phosphate reduced NGF Nerve Growth Factor NGS Nerve growth serum NIA National Institute of Aging NINCDS National Institute of Neurological & Communicative Disorders & Stroke NO Nitrous oxide NQO1 NADPH Quinone Oxidoreductase 1 NSAIDS Nonsteroidal anti-inflammatory drugs PARP Poly (ADP-ribose) polymerase PBS Phosphate buffered Saline PCNA Proliferating cell nuclear Antigen PCR Polymerase Chain Reaction PET Positron Emission Tomography PGEX-KG Bacterial Expression vector PHF Parahelical filaments PLK Polo like Kinase PMSF Phenylmethanesulfonyl fluoride PS1/2 Presenilin 1/2 PUFA Polyunsaturated fatty acid RAGE Receptor for advanced glycation end products ROS Reactive oxygen species 14 SAPK Stress-activated protein kinase SDS Sodium dodecyl sulfate SEK SAPK kinase SOD Superoxide dismutase SPECT Single Photon Emission Computed Tomography SSB Single strand breaks TAK1 TGF-β activating kinase 1 TBS Tris Buffered Saline TGFβ Transforming growth factor-β 15 ONCOGENIC PARALLELS IN ALZHEIMER DISEASE Abstract by ARUN K.
Recommended publications
  • Curcumin Effect on Bleomycin-Induced Pulmonary Fibrosis in Mus Musculus
    JITV Vol. 20 No 2 Th. 2015: 148-157 Curcumin Effect on Bleomycin-Induced Pulmonary Fibrosis in Mus musculus Rahmi A1, Setiyono A2, Juniantito V2 1Graduate School of Animal Biomedical Science, Faculty of Veterinary Medicine, Bogor Agricultural University 2Division of Pathology, Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University E-mail: [email protected]; [email protected] (received 31-03-2015; revised 29-05-2015; accepted 04-06-2015) ABSTRAK Rahmi A, Setiyono A, Juniantito V. 2015. Pengaruh kurkumin terhadap fibrosis paru-paru akibat aplikasi bleomisin pada Mus musculus. JITV 20(2): 148-157. DOI: http://dx.doi.org/10.14334/jitv.v20i2.1169 Kurkumin merupakan bahan aktif utama dari tanaman kunyit (Curcuma longa) diketahui memiliki aktivitas sebagai anti- oksidan dan anti-inflamasi. Bleomisin merupakan salah satu obat anti-kanker yang dapat menginduksi fibrosis paru-paru pada manusia dan hewan. Tujuan penelitian ini adalah untuk mengetahui efek biologis kurkumin pada fibrosis paru-paru yang diinduksi bleomisin pada mencit. Sebanyak 16 ekor mencit galur ddy dibagi dalam 4 kelompok perlakuan: (i) kontrol, 100 µl aquadest steril diinjeksikan secara SC, (ii) bleomisin (BLM), 100 µl bleomisin konsentrasi 1 mg/ml diinjeksikan secara SC, (iii) kurkumin (CMN), 100 µl aquadest steril diinjeksikan secara SC dan 100 mg/kg BB kurkumin dalam 0,5% carboxymethylcellulose (CMC) yang diinjeksikan secara IP, dan (iv) BLM+CMN, 100 µl bleomisin dengan konsentrasi 1 mg/ml diinjeksikan secara SC dan 100 mg/kg BB kurkumin dalam 0,5% CMC diinjeksikan secara IP. Semua perlakuan diberikan setiap hari selama 4 minggu. Organ paru-paru dikoleksi dalam 10% buffered neutral formalin (BNF).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0010901 A1 Hibino Et Al
    US 20140010901A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0010901 A1 Hibino et al. (43) Pub. Date: Jan. 9, 2014 (54) BLEOMYCIN HYDROLASE PRODUCTION Publication Classification PROMOTOR (51) Int. Cl. A61E36/756 (2006.01) A63L/047 (2006.01) (75) Inventors: Toshihiko Hibino, Yokohama-shi (JP); A 6LX3/97 (2006.01) Shoko Yamada, Yokohama-shi (JP); A61E36/53 (2006.01) Hidekazu Fukushima, Yokohama-shi A61E36/23 (2006.01) (JP) (52) U.S. Cl. CPC ............... A61K 36/756 (2013.01); A61K 36/53 (2013.01); A61 K36/23 (2013.01); A61 K (73) Assignee: Shiseido Company, Ltd. 31/197 (2013.01); A61 K3I/047 (2013.01) USPC ........... 424/745; 424/769; 424/773; 424/777; (21) Appl. No.: 14/004,977 514/562; 514/738 (57) ABSTRACT (22) PCT Filed: Mar. 14, 2012 Provided is a novel bleomycin hydrolase production pro moter. (86). PCT No.: PCT/UP2012/056581 Provided is a bleomycin hydrolase production promoter, S371 (c)(1), natural moisturizing factor production promoter, and dry skin (2), (4) Date: Sep. 13, 2013 remedy, comprising as an active ingredient thereof one or a plurality of ingredients selected from the group consisting of (30) Foreign Application Priority Data chestnut rose extract, angelica root extract, cork tree bark extract, lamium album extract, rosemary extract, benzene Mar. 15, 2011 (JP) ................................. 2011-057126 sulfonyl GABA and erythritol. Patent Application Publication Jan. 9, 2014 Sheet 1 of 23 US 2014/0010901 A1 Fig.1 SPECIMEN 1 SPEC MEN 2 2 5 10 20 2 5 10 20 NUMBER OF TIMES OF TAPE STRIPPING Fig.2 SPECIMEN T N A M T, A: SUBJECTS NOT HAVING DRY SKIN N: SUBJECT HAVING SOMEWHAT DRY SKIN, MSUBJECT HAVING DRY SKN Patent Application Publication Jan.
    [Show full text]
  • In a Three-Dimensional Reconstructed Human Epidermis Filaggrin-2 Is Essential for Proper Cornification
    Citation: Cell Death and Disease (2015) 6, e1656; doi:10.1038/cddis.2015.29 OPEN & 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15 www.nature.com/cddis In a three-dimensional reconstructed human epidermis filaggrin-2 is essential for proper cornification V Pendaries1,2,3, M Le Lamer1,2,3, L Cau1,2,3, B Hansmann4, J Malaisse5, S Kezic6, G Serre1,2,3 and M Simon*,1,2,3 Atopic dermatitis is a chronic inflammatory skin disease with defects in the epidermal barrier. In a cohort of African-American children, a FLG2 nonsense mutation has been associated with the disease. In the epidermis of European patients, the expression of filaggrin-2, the filaggrin-related protein encoded by FLG2, is decreased. To describe the function of filaggrin-2 and evaluate the impact of its deficiency, its expression was downregulated using lentivirus-mediated shRNA interference in a three-dimensional reconstructed human epidermis (RHE) model. This resulted in parakeratosis and a compact stratum corneum, presence of abnormal vesicles inside the corneocytes, increased pH and reduced amounts of free amino acids at the RHE surface, leading to increased sensitivity to UVB radiations. The expression of differentiation markers was slightly modified. However, we observed reduced proteolytic processing of corneodesmosin, hornerin and filaggrin in parallel with reduced amounts of caspase-14 and bleomycin hydrolase. Our data demonstrated that filaggrin-2 is important for a proper cornification and a functional stratum corneum. Its downregulation in atopic patients may be involved in the disease-associated epidermis impairment. Cell Death and Disease (2015) 6, e1656; doi:10.1038/cddis.2015.29; published online 19 February 2015 Atopic dermatitis (AD; OMIM #603165), also known as atopic homologous repeats and a S100-homologous N-terminal eczema, is a very common inflammatory skin disease.1,2 It is domain.
    [Show full text]
  • Biochemical Investigation of the Ubiquitin Carboxyl-Terminal Hydrolase Family" (2015)
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations Spring 2015 Biochemical investigation of the ubiquitin carboxyl- terminal hydrolase family Joseph Rashon Chaney Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Biochemistry Commons, Biophysics Commons, and the Molecular Biology Commons Recommended Citation Chaney, Joseph Rashon, "Biochemical investigation of the ubiquitin carboxyl-terminal hydrolase family" (2015). Open Access Dissertations. 430. https://docs.lib.purdue.edu/open_access_dissertations/430 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. *UDGXDWH6FKRRO)RUP 8SGDWHG PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance 7KLVLVWRFHUWLI\WKDWWKHWKHVLVGLVVHUWDWLRQSUHSDUHG %\ Joseph Rashon Chaney (QWLWOHG BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Doctor of Philosophy )RUWKHGHJUHHRI ,VDSSURYHGE\WKHILQDOH[DPLQLQJFRPPLWWHH Chittaranjan Das Angeline Lyon Christine A. Hrycyna George M. Bodner To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Chittaranjan Das $SSURYHGE\0DMRU3URIHVVRU V BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $SSURYHGE\R. E. Wild 04/24/2015 +HDGRIWKH'HSDUWPHQW*UDGXDWH3URJUDP 'DWH BIOCHEMICAL INVESTIGATION OF THE UBIQUITIN CARBOXYL-TERMINAL HYDROLASE FAMILY Dissertation Submitted to the Faculty of Purdue University by Joseph Rashon Chaney In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2015 Purdue University West Lafayette, Indiana ii All of this I dedicate wife, Millicent, to my faithful and beautiful children, Josh and Caleb.
    [Show full text]
  • Families and Clans of Cysteine Peptidases
    Families and clans of eysteine peptidases Alan J. Barrett* and Neil D. Rawlings Peptidase Laboratory. Department of Immunology, The Babraham Institute, Cambridge CB2 4AT,, UK. Summary The known cysteine peptidases have been classified into 35 sequence families. We argue that these have arisen from at least five separate evolutionary origins, each of which is represented by a set of one or more modern-day families, termed a clan. Clan CA is the largest, containing the papain family, C1, and others with the Cys/His catalytic dyad. Clan CB (His/Cys dyad) contains enzymes from RNA viruses that are distantly related to chymotrypsin. The peptidases of clan CC are also from RNA viruses, but have papain-like Cys/His catalytic sites. Clans CD and CE contain only one family each, those of interleukin-ll3-converting enz3wne and adenovirus L3 proteinase, respectively. A few families cannot yet be assigned to clans. In view of the number of separate origins of enzymes of this type, one should be cautious in generalising about the catalytic mechanisms and other properties of cysteine peptidases as a whole. In contrast, it may be safer to gener- alise for enzymes within a single family or clan. Introduction Peptidases in which the thiol group of a cysteine residue serves as the nucleophile in catalysis are defined as cysteine peptidases. In all the cysteine peptidases discovered so far, the activity depends upon a catalytic dyad, the second member of which is a histidine residue acting as a general base. The majority of cysteine peptidases are endopeptidases, but some act additionally or exclusively as exopeptidases.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Knockdown of Filaggrin in a Three-Dimensional Reconstructed
    ORIGINAL ARTICLE Knockdown of Filaggrin in a Three-Dimensional Reconstructed Human Epidermis Impairs Keratinocyte Differentiation Vale´rie Pendaries1,2,3, Jeremy Malaisse4, Laurence Pellerin1,2,3, Marina Le Lamer1,2,3, Rachida Nachat1,2,3,8, Sanja Kezic5, Anne-Marie Schmitt6,CarlePaul1,2,3,7, Yves Poumay4, Guy Serre1,2,3 and Michel Simon1,2,3 Atopic dermatitis is a chronic inflammatory skin disorder characterized by defects in the epidermal barrier and keratinocyte differentiation. The expression of filaggrin, a protein thought to have a major role in the function of the epidermis, is downregulated. However, the impact of this deficiency on keratinocytes is not really known. This was investigated using lentivirus-mediated small-hairpin RNA interference in a three-dimensional recon- structed human epidermis (RHE) model, in the absence of other cell types than keratinocytes. Similar to what is known for atopic skin, the experimental filaggrin downregulation resulted in hypogranulosis, a disturbed corneocyte intracellular matrix, reduced amounts of natural moisturizing factor components, increased permeability and UV-B sensitivity of the RHE, and impaired keratinocyte differentiation at the messenger RNA and protein levels. In particular, the amounts of two filaggrin-related proteins and one protease involved in the degradation of filaggrin, bleomycin hydrolase, were lower. In addition, caspase-14 activation was reduced. These results demonstrate the importance of filaggrin for the stratum corneum properties/functions. They indicate that filaggrin downregulation in the epidermis of atopic patients, either acquired or innate, may be directly responsible for some of the disease-related alterations in the epidermal differentiation program and epidermal barrier function. Journal of Investigative Dermatology advance online publication, 10 July 2014; doi:10.1038/jid.2014.259 INTRODUCTION a secondary local epidermal barrier disruption.
    [Show full text]
  • Genomic Structure and Genetic Mapping of the Human Neutral Cysteine Protease Bleomycin Hydrolase'
    (CANCER RESEARCH57. 4191—4195,October1, 1997] Advances in Brief Genomic Structure and Genetic Mapping of the Human Neutral Cysteine Protease Bleomycin Hydrolase' Susana E. Montoya, Robert E. Ferrell, and John S. Lazo2 Departments ofHuman Genetics [S. E. M., R. E. F.J and Pharmacology [J. S. LI, University of Pittsburgh, Pittsburgh. Pennsylvania 1526/ Abstract reported to bind DNA and to act as a repressor of the Gal4 regulatory system (10). Thus, BH, which has been conserved during evolution, is Bleomycin hydrolase (BH) is the only known eukaryotic enzyme that likely to have important physiological functions in human cells in inactivates the widely used antineoplastic agent bleomycin (BLM) and is a cluding its key role in drug metabolism. We now report the genetic primary candidate gene for protection against lethal BLM-induced pul monary fibrosis and for BLM resistance in tumors. Human B!! was found mapping of the human BH gene and its overall genomic organization, to exist as a single gene that was mapped to chromosome 17 using National which corroborates membership in the cysteine protease superfamily. Institute of General Medical Sciences human/rodent hybrid mapping panels and localized to 17q11.1—11.2 by linkage analysis using the Centre Materials and Methods d'Etude du Polymorphisme Humain reference database. The human BH gene consisted of 11 exons ranging in size from 69—198bpseparated by Characterization of Human BH Genomic Structure. Amplification introns ofapproximately 1kb, reflectingthe archetypal genomicstructure primers (Fig. 1) from adjacent exons were designed using the human cDNA of the cysteine protease family. A polymorphic site was identified in the sequence (8) and intron-exon boundary data from the 5' end of the mouse BH eleventh exon at bp 1450 encodIng either valine or Isoleucine.
    [Show full text]
  • Cold Adaptation in Antarctic Notothenioids
    International Journal of Molecular Sciences Article Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency Federico Ansaloni 1,2 , Marco Gerdol 1,* , Valentina Torboli 1, Nicola Reinaldo Fornaini 1,3, Samuele Greco 1 , Piero Giulio Giulianini 1 , Maria Rosaria Coscia 4, Andrea Miccoli 5 , Gianfranco Santovito 6 , Francesco Buonocore 5 , Giuseppe Scapigliati 5,† and Alberto Pallavicini 1,7,8,† 1 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (F.A.); [email protected] (V.T.); [email protected] (N.R.F.); [email protected] (S.G.); [email protected] (P.G.G.); [email protected] (A.P.) 2 International School for Advanced Studies, 34136 Trieste, Italy 3 Department of Cell Biology, Charles University, 12800 Prague, Czech Republic 4 Institute of Biochemistry and Cell Biology, National Research Council of Italy, 80131 Naples, Italy; [email protected] 5 Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; [email protected] (A.M.); [email protected] (F.B.); [email protected] (G.S.) 6 Department of Biology, University of Padua, 35131 Padua, Italy; [email protected] 7 Anton Dohrn Zoological Station, 80122 Naples, Italy 8 National Institute of Oceanography and Experimental Geophysics, 34010 Trieste, Italy * Correspondence: [email protected] Citation: Ansaloni, F.; Gerdol, M.; † These authors contributed equally to this work. Torboli, V.; Fornaini, N.R.; Greco, S.; Giulianini, P.G.; Coscia, M.R.; Miccoli, A.; Santovito, G.; Buonocore, F.; et al.
    [Show full text]
  • Wo 2008/127646 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127646 A2 (51) International Patent Classification: Not classified AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, (21) International Application Number: EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, PCT/US2008/004699 IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, (22) International Filing Date: 10 April 2008 (10.04.2008) MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, (25) Filing Language: English PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (26) Publication Language: English ZA, ZM, ZW (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 60/922,994 11 April 2007 (11.04.2007) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): BIOVER- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), DANT, INC. [US/US] ; 7330 Carroll Road, San Diego, CA European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 92121 (US). FR, GB, GR, HR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, (72) Inventors; and CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Caspase-14 Is Required for Filaggrin Degradation to Natural Moisturizing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector See related commentary on pg 2173 ORIGINAL ARTICLE Caspase-14 Is Required for Filaggrin Degradation to Natural Moisturizing Factors in the Skin Esther Hoste1,2,11, Patrick Kemperman3,4,11, Michael Devos1,2,11, Geertrui Denecker1,2, Sanja Kezic5, Nico Yau5, Barbara Gilbert1,2, Saskia Lippens1,2, Philippe De Groote1,2, Ria Roelandt1,2, Petra Van Damme6, Kris Gevaert6, Richard B. Presland7,8, Hidenari Takahara9, Gerwin Puppels3,10, Peter Caspers3,10, Peter Vandenabeele1,2 and Wim Declercq1,2 Caspase-14 is a protease that is mainly expressed in suprabasal epidermal layers and activated during keratinocyte cornification. Caspase-14-deficient mice display reduced epidermal barrier function and increased sensitivity to UVB radiation. In these mice, profilaggrin, a protein with a pivotal role in skin barrier function, is processed correctly to its functional filaggrin (FLG) repeat unit, but proteolytic FLG fragments accumulate in the epidermis. In wild-type stratum corneum, FLG is degraded into free amino acids, some of which contribute to generation of the natural moisturizing factors (NMFs) that maintain epidermal hydration. We found that caspase-14 cleaves the FLG repeat unit and identified two caspase-14 cleavage sites. These results indicate that accumulation of FLG fragments in caspase-14À/À mice is due to a defect in the terminal FLG degradation pathway. Consequently, we show that the defective FLG degradation in caspase-14-deficient skin results in substantial reduction in the amount of NMFs, such as urocanic acid and pyrrolidone carboxylic acid.
    [Show full text]
  • Purification and Characterization of Bleomycin Hydrolase, Which Represents a New Family of Cysteine Proteases, from Rat Skin
    J. Biochem. 119, 29-36 (1996) Purification and Characterization of Bleomycin Hydrolase, Which Represents a New Family of Cysteine Proteases, from Rat Skin Atsushi Takeda,*,' Dousei Higuchi,t Takako Yamamoto ,* Yoshiko Nakamura,* Y utaka Masuda,t Takahiro Hirabayashi,t and Kazuyasu Nakaya•ö Departments of *Clinical Pathology and tDermatology , Showa University Fujigaoka Hospital, 1-30 Fujigaoka, A oba-ku, Yokohama 227; and•öDepartment of Biochemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142 Received for publication, June 12 , 1995 Bleomycin (BLM) hydrolase, which hydrolyzes the carboxyamide bond in the ,ƒÀ-amino alanine moiety, was purified from newborn rat skin. The enzyme was purified 2,500-fold over the crude extract to apparent homogeneity in five steps in the presence of 2-mercap toethanol: 45-55% ammonium sulfate fractionation, followed by chromatographies on Sephacryl S-200, DEAE-cellulofine, Phe-Superose, and Mono Q ion-exchange. The native enzyme had a molecular mass of 280kDa according to gel filtration. The subunit molecular mass was estimated as 48kDa by SDS-PAGE, indicating that the enzyme was comprised of six identical subunits. The amino acid sequence of its NH,-terminus was determined to be acetyl-Met-Asn-Asn-Ala-Gly-Leu-Asn-Ser-Glu-Lys-, which was not found in the amino acid sequence database. The optimum pH of the enzyme was 7.5 with pepleomycin (PLM). The Km and Vmax values were 2.1mM and 6.8ƒÊmol•Emg-1•Eh-1 for PLM, and 1.8mM and 7.2 ƒÊ mol•Emg-1•Eh-1 for BLM-A2, respectively.
    [Show full text]