Self-Healing Silk from the Sea: Role of Helical Hierarchical Structure in Pinna Nobilis Byssus Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silk, Linen, Leather, Denim, Grass, Cotton, Felt
Silk, linen, leather, denim, grass, cotton, felt. Natural materials keep the integrity of their shape yet hold an impression of the figure that has worn them. Fit-out for Olivia Spencer Bower speaks to the fabrics and forms that we live in. An assortment of garment patterns, building plans and the lifestyles of art heroines provide templates or underlying structures for Emma Fitts’ installation at the Ilam School of Fine Arts gallery. Adopting the layout of a modernist home and featuring a series of fabric hangings and clothing cutouts, Fitts’ work acutely relates to our situated knowledge, the proportions of the body and our experience of space, while also implying much less measurable qualities. Alternative histories that reveal the social relationships and values of a bygone era are incorporated to form a homage of sorts, though these references are evoked to shed light on the present–what it means to live and make work as an artist today. The gallery is physically divided by four large textile works, hung from the ceiling according to the walls shown in architectural plans for 15A Leinster Avenue, Christchurch–the former home of artist Olivia Spencer Bower (1905- 82). These soft walls enable visitors to occupy the space as though wandering through her actual house: living room, kitchen, sunroom, bedroom and studio. Designed in 1969 by architects Cowey and McGregor in the Christchurch style of neo-brutalism, the house was commissioned to accommodate the needs of a female artist living alone. There is an emphasis on form developed in relation to function and it is both refined and compact, manifesting these ideals. -
2019-The Benthic Sea-Silk-Thread Displacement of a Sessile Bivalve
The benthic sea-silk-thread displacement of a sessile bivalve, Pinctada ANGOR UNIVERSITY imbricata radiata (Leach, 1819) in the Arabian-Persian Gulf Giraldes, Bruno Welter; Leitao, Alexander; Smyth, David PLoS ONE DOI: 10.1371/journal.pone.0215865 PRIFYSGOL BANGOR / B Published: 01/05/2019 Publisher's PDF, also known as Version of record Cyswllt i'r cyhoeddiad / Link to publication Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Giraldes, B. W., Leitao, A., & Smyth, D. (2019). The benthic sea-silk-thread displacement of a sessile bivalve, Pinctada imbricata radiata (Leach, 1819) in the Arabian-Persian Gulf. PLoS ONE, 14(5), [e0215865]. https://doi.org/10.1371/journal.pone.0215865 Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 28. Sep. 2021 RESEARCH ARTICLE -
“Al-Tally” Ascension Journey from an Egyptian Folk Art to International Fashion Trend
مجمة العمارة والفنون العدد العاشر “Al-tally” ascension journey from an Egyptian folk art to international fashion trend Dr. Noha Fawzy Abdel Wahab Lecturer at fashion department -The Higher Institute of Applied Arts Introduction: Tally is a netting fabric embroidered with metal. The embroidery is done by threading wide needles with flat strips of metal about 1/8” wide. The metal may be nickel silver, copper or brass. The netting is made of cotton or linen. The fabric is also called tulle-bi-telli. The patterns formed by this metal embroidery include geometric figures as well as plants, birds, people and camels. Tally has been made in the Asyut region of Upper Egypt since the late 19th century, although the concept of metal embroidery dates to ancient Egypt, as well as other areas of the Middle East, Asia, India and Europe. A very sheer fabric is shown in Ancient Egyptian tomb paintings. The fabric was first imported to the U.S. for the 1893 Chicago. The geometric motifs were well suited to the Art Deco style of the time. Tally is generally black, white or ecru. It is found most often in the form of a shawl, but also seen in small squares, large pieces used as bed canopies and even traditional Egyptian dresses. Tally shawls were made into garments by purchasers, particularly during the 1920s. ملخص البحث: التمي ىو نوع من انواع االتطريز عمى اقمشة منسوجة ويتم ىذا النوع من التطريز عن طريق لضم ابر عريضة بخيوط معدنية مسطحة بسمك 1/8" تصنع ىذه الخيوط من النيكل او الفضة او النحاس.واﻻقمشة المستخدمة في صناعة التمي تكون مصنوعة اما من القطن او الكتان. -
Sea-Silk Based Nanofibers and Their Diameter Prediction THERMAL SCIENCE: Year 2019, Vol
Tian, D., et al.: Sea-Silk Based Nanofibers and Their Diameter Prediction THERMAL SCIENCE: Year 2019, Vol. 23, No. 4, pp. 2253-2256 2253 SEA-SILK BASED NANOFIBERS AND THEIR DIAMETER PREDICTION by * Dan TIAN, Chan-Juan ZHOU, and Ji-Huan HE National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China Original scientific paper https://doi.org/10.2298/TSCI1904253T Diameter of sea-silk based nanofibers prepared by electrospinning is closely re- lated to the concentrations of sea-silk solution. A mathematical model is estab- lished according the mass conservation law in fluid mechanics to predict the di- ameter of fibers, and the MATLAB software is used to fit the experiment value. The results show that the fitted equation is quite accurate and efficient for estimating the diameter of fibers with different concentrations. Key words: electrospinning, sea-silk, mathematical model, nanofiber, fiber’s diameter. Introduction Electrospinning is an effective way to prepare nanofibers, it is a fabrication process that uses an electric field to control the deposition of polymer fibers onto a receptor [1-8]. In electrospinning process, the diameter of nanofiber is determined by many factors, like volt- age, viscosity of solution, receptor’s distance, environment temperature, environment humidi- ty, etc. [9, 10]. Nanofiber’s diameter and morphology can also be controlled by additives [11]. The sea silk is one of the oldest natural silks, which has a history of more than 5000 years [12-16], and now we can produce artificial sea silk through Mytilus edulis. To this end, we extract protein from Mytilus edulis and then use it as an additive for electrospinning, this maybe has some effects on the morphology of fibers. -
Attachment Properties of Blue Mussel (Mytilus Edulis L.) Byssus Threads on Culture-Based Artificial Collector Substrates
Aquacultural Engineering 42 (2010) 128–139 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Contents lists available at ScienceDirect provided by Electronic Publication Information Center Aquacultural Engineering journal homepage: www.elsevier.com/locate/aqua-online Attachment properties of blue mussel (Mytilus edulis L.) byssus threads on culture-based artificial collector substrates M. Brenner a,b,c,∗, B.H. Buck a,c,d a Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany b Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany c Institute for Marine Resourses (IMARE), Klußmannstraße 1, 27570 Bremerhaven, Germany d University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany article info abstract Article history: The attachment strength of blue mussels (Mytilus edulis) growing under exposed conditions on 10 differ- Received 25 May 2009 ent artificial substrates was measured while assessing microstructure of the applied substrate materials. Accepted 9 February 2010 Fleece-like microstructure attracted especially mussel larvae, however, most settled individuals lost attachment on this type of microstructure with increasing size during the time of experiment. Sub- Keywords: strates with thick filaments and long and fixed appendices were less attractive to larvae but provided a Spat collectors better foothold for juvenile mussels as shown by the results of the dislodgement trials. In addition these Offshore aquaculture appendices of substrates could interweave with the mussels, building up a resistant mussel/substrate con- Offshore wind farms Mytilus edulis glomerate. Our results show that a mussel byssus apparatus can withstand harsh conditions, if suitable Dislodgement substrates are deployed. -
Natural, Artificial and Synthetic Fibres: Because There Are Differences...There Are Many...And It Is Important to Know Them
Deepening T.SILK | Natural, artificial and synthetic fibers. Because there are the differences… there are many… and it is important to know them Natural, artificial and synthetic fibres: because there are differences...there are many...and it is important to know them. Natural fibres are those obtained through simple mechanical processes that do not modify the structure. They differ between natural fibres of animal origin (wool, angora fur, camel fur, cashmere fur, mohair fur, alpaca fur, llama fur, vicuna fur, bison fur, qiviut fur, sea silk, down) and vegetable (cotton, linen, hemp, jute, ramie or nettle, sisal, coconut, broom, hibiscus, manila, straw, bamboo, soy, kapok). - Silk Chemically: • Fibroin – highly biocompatible and biodegradable natural polymer protein (carbon 47.6% Hydrogen 6.39% Nitrogen 18.33% Oxygen 27.68%) • Sericin – natural protein with a unique affinity to other human proteins (carbon 46.50% Hydrogen 6.04% Nitrogen 16.50% Oxygen 30.96%) Amino acid components: GLYCINE (Helps to trigger the oxygen release process) - ALANINE (Important source of energy for muscle tissue) - SERINE (Source of glucose storage in the liver and muscles) - ASPARTIC ACID (Helps the expulsion of harmful ammonia from the body) - GLUTAMIC ACID (Considered as a natural "food for the mind") - VALINE (Stimulates mental vigour and muscle coordination) - PROLINE (Important for the correct functioning of joints and tendons) - THREONINE (Important constituent of collagen) - LYSINE (Ensures adequate calcium absorption) - ARGININE (Improves the immune -
The Peculiar Protein Ultrastructure of Fan Shell and Pearl Oyster Byssus
Soft Matter View Article Online PAPER View Journal | View Issue A new twist on sea silk: the peculiar protein ultrastructure of fan shell and pearl oyster byssus† Cite this: Soft Matter, 2018, 14,5654 a a b b Delphine Pasche, * Nils Horbelt, Fre´de´ric Marin, Se´bastien Motreuil, a c d Elena Macı´as-Sa´nchez, Giuseppe Falini, Dong Soo Hwang, Peter Fratzl *a and Matthew James Harrington *ae Numerous mussel species produce byssal threads – tough proteinaceous fibers, which anchor mussels in aquatic habitats. Byssal threads from Mytilus species, which are comprised of modified collagen proteins – have become a veritable archetype for bio-inspired polymers due to their self-healing properties. However, threads from different species are comparatively much less understood. In particular, the byssus of Pinna nobilis comprises thousands of fine fibers utilized by humans for millennia to fashion lightweight golden fabrics known as sea silk. P. nobilis is very different from Mytilus from an ecological, morphological and evolutionary point of view and it stands to reason that the structure– Creative Commons Attribution 3.0 Unported Licence. function relationships of its byssus are distinct. Here, we performed compositional analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) to investigate byssal threads of P. nobilis, as well as a closely related bivalve species (Atrina pectinata) and a distantly related one (Pinctada fucata). Received 20th April 2018, This comparative investigation revealed that all three threads share a similar molecular superstructure Accepted 18th June 2018 comprised of globular proteins organized helically into nanofibrils, which is completely distinct from DOI: 10.1039/c8sm00821c the Mytilus thread ultrastructure, and more akin to the supramolecular organization of bacterial pili and F-actin. -
Silk Cotton Vs. Bombax Vs. Banyan
Ceiba pentandra Kopok tree, Silk-cotton tree Ta Prohm, Cambodia By Isabel Zucker Largest known specimen in Lal Bagh Gardens in Bangalore, India. http://scienceray.com/biology/botany/amazing-trees-from-around-the-world-the-seven-wonder-trees/ Ceiba pentandra Taxonomy • Family: Malvaceae • Sub family: Bombacaceae -Bombax spp. in same family - much online confusion as to which tree is primarily in Ta Praham, Cambodia. • Fig(Moraceae), banyan and kapok trees in Ta Praham • Often referred to as a banyan tree, which is quite confusing. Distribution • Originated in the American tropics, natural and human distribution. • Africa, Asia. – Especially Indonesia and Thailand • Indian ocean islands • Ornamental shade tree • Zone – Humid areas, rainforest, dry areas – Mean annual precipitation 60-224 inches per year – Temperatures ranging from 73-80 unaffected by frost – Elevation from 0-4,500 feet – Dry season ranging from 0-6 months Characteristics • Rapidly growing, deciduous • Reaches height up to 200 feet • Can grow 13 feet per year • Diameter up to 9 feet above buttress – Buttress can extend 10 feet from the trunk and be 10 feet tall • large umbrella-shaped canopies emerge above the forest canopy • http://www.flmnh.ufl.edu/caribarch/ceiba.htm • Home to many animals – Birds, frogs, insects – Flowers open in the evening, pollinated by bats • Epiphytes grow in branches • Compound leaves with 5-8 lance- shaped leaflets 3-8 inches long • Dense clusters of whitish to pink flowers December to February – 3-6 inch long, elliptical fruits. – Seeds of fruit surrounded by dense, cottony fibers. – Fibers almost pure cellulose, buoyant, impervious to water, low thermal conductivity, cannot be spun. -
ATR 61 Cover Yellow Red.Jpg
Current Research in Textile Archaeology along the Nile Nosch, Marie Louise Bech Published in: Archaeological Textiles Review Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Nosch, M. L. B. (2019). Current Research in Textile Archaeology along the Nile. Archaeological Textiles Review, 61, 26-28. Download date: 09. Apr. 2020 Contents Archaeological Textiles Review Editorial 2 ATR is published by the Society Friends of ATN, hosted by Centre for Textile Articles Research in Copenhagen. Editors: Spinning for the gods? Preliminary 3 Eva Andersson Strand observations on prehistoric textile production Karina Grömer at Hierakonpolis, Egypt Jane Malcolm-Davies Anne Drewsen Ulla Mannering Textiles from Zawaydah, Naqada, Upper Egypt 14 Margarita Gleba, Mathieu Boudin Scientifi c committ ee: and Grazia A. Di Pietro John Peter Wild, UK Lise Bender Jørgensen, Norway Late Antique textiles from Egypt in the 24 Elisabeth Wincott Heckett , Ireland Ny Carlsberg Glyptotek, Copenhagen Johanna Banck-Burgess, Germany Cecilie Brøns, Ina Vanden Berghe and Irene Skals Tereza Štolcová, Slovakia Heidi Sherman, USA Blue dyed textiles in Early Iron Age Europe: 42 Claudia Merthen, Germany Accessible or exclusive? Christina Margariti, Greece Patricia Hopewell and Susanna Harris Layout: Karina Grömer The Textiles of Üzüür Gyalan: Towards the 56 Cover: Charlott e Rimstad identifi cation of a nomadic weaving tradition in (Image: NCG Collection ÆIN 956, the Mongolian Altai Copenhagen – Late Antique textile) Kristen Rye Pearson, Chuluunbat Mönkhbayar, Galbadrakh Enkhbat and Jamsranjav Bayarsaikhan Print: Grafi sk University of Copenhagen Time looms over us: Observations from an 71 experimental comparison of medieval English loom-types Subscription information: To purchase Gwendoline Pepper a copy of the latest Archaeological Textiles Review, please visit: Nets – Knots – Lace: Early 16th century www.webshophum-en.ku.dk/shop/ 88 archaeological-textiles-333c1.html. -
Extensible Byssus of Pinctada Fucata
www.nature.com/scientificreports OPEN Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein Received: 18 June 2015 1,2 1 1 1 1 1 Accepted: 15 September 2015 Chuang Liu , Shiguo Li , Jingliang Huang , Yangjia Liu , Ganchu Jia , Liping Xie & 1 Published: 08 October 2015 Rongqing Zhang The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater. In recent years, marine animals have attracted considerable attention in various areas of bioinspired engineering1–4. -
Mussels As a Model System for Integrative Ecomechanics
UC Santa Barbara UC Santa Barbara Previously Published Works Title Mussels as a model system for integrative ecomechanics. Permalink https://escholarship.org/uc/item/0xr832ct Journal Annual review of marine science, 7(1) ISSN 1941-1405 Authors Carrington, Emily Waite, J Herbert Sarà, Gianluca et al. Publication Date 2015 DOI 10.1146/annurev-marine-010213-135049 Peer reviewed eScholarship.org Powered by the California Digital Library University of California MA07CH19-Carrington ARI 20 November 2014 8:4 Mussels as a Model System for Integrative Ecomechanics Emily Carrington,1 J. Herbert Waite,2 Gianluca Sara,` 3 and Kenneth P. Sebens1 1Department of Biology and Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250; email: [email protected], [email protected] 2Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106; email: [email protected] 3Dipartimento di Scienze della Terra e del Mare, University of Palermo, 90128 Palermo, Italy; email: [email protected] Annu. Rev. Mar. Sci. 2015. 7:443–69 Keywords First published online as a Review in Advance on byssus, dislodgment, dynamic energy budget, fitness, mussel foot proteins, August 25, 2014 tenacity The Annual Review of Marine Science is online at marine.annualreviews.org Abstract This article’s doi: Mussels form dense aggregations that dominate temperate rocky shores, and 10.1146/annurev-marine-010213-135049 they are key aquaculture species worldwide. Coastal environments are dy- Copyright c 2015 by Annual Reviews. Annu. Rev. Marine. Sci. 2015.7:443-469. Downloaded from www.annualreviews.org namic across a broad range of spatial and temporal scales, and their changing All rights reserved abiotic conditions affect mussel populations in a variety of ways, including Access provided by University of California - Santa Barbara on 01/30/15. -
The Effect of Various Spat Collector Materials to Spat Attachment
Journal of Coastal Development ISSN : 1410-5217 Volume 15, Number 1, October 2011 : 34 - 44 Accredited : 83/Dikti/Kep/2009 Original Paper THE EFFECT OF VARIOUS SPAT COLLECTOR MATERIALS FOR SPAT ATTACHMENT OF PEARL OYSTER (Pinctada maxima) Endang Arini1 and Nur Taufiq Syamsudin Putra Jaya2 1Fisheries Department, Faculty of Fisheries and Marine Science, Diponegoro University 2Marine Science Department Faculty of Fisheries and Marine Science, Diponegoro University Jl. Prof. Soedarto, SH, Tembalang Campus, Semarang -50275, Indonesia Received : April, 20, 2011 ; Accepted : June, 30, 2011 ABSTRACT Early stage development of pearl oyster spat was very critical, hence spat required suitable substrates for their settlement to complete their metamorphosis. In this stage, byssus for the attachment is vulnerable and easy to break if there are some disturbance e.g. water movement, hence spat easily falling onto the bottom layer which may have various dirt materials leading to the dead of the spat. In the pearl oyster culture spat collector is important. The aim of this study is to study the effect of different collector materials to the number of spat settled, to reveal the best collector materials and the endurance of spat at the collector. This study was conducted in PT Autore Pearl Culture, at Sumbawa island, Nusa Tenggara Province. Materials used in this research were collectors of different substance i.e. asbestos (A), bamboo (B), polyethylene and roof ceramic (D) substance. The method used was laboratories experiment with Completely Random Design by 4 treatments and 3 replications. Data taken were the number of spat settlement, endurance test, and water quality. Data tested with Analysis of Variance (ANOVA) and further tested with Duncan Duplicate Regional test.