Neural Computation for Rehabilitation Animal Toxins and Their Advantages in Biotechnology and Pharmacology

Total Page:16

File Type:pdf, Size:1020Kb

Neural Computation for Rehabilitation Animal Toxins and Their Advantages in Biotechnology and Pharmacology BioMed Research International Animal Toxins and Their Advantages in Biotechnology and Pharmacology Guest Editors: S. L. Da Silva, E. G. Rowan, F. Albericio, R. G. Stábeli, NeuralL. A. Calderon, Computation and A. M. Soares for Rehabilitation Animal Toxins and Their Advantages in Biotechnology and Pharmacology BioMed Research International Animal Toxins and Their Advantages in Biotechnology and Pharmacology Guest Editors: S. L. Da Silva, E. G. Rowan, F. Albericio, R. G. Stabeli,´ L. A. Calderon, and A. M. Soares Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Animal Toxins and Their Advantages in Biotechnology and Pharmacology,S.L.DaSilva,E.G.Rowan, F. Albericio, R. G. Stabeli,´ L. A. Calderon, and A. M. Soares Volume 2014, Article ID 951561, 2 pages Alkylation of Histidine Residues of Bothrops jararacussu Venom Proteins and Isolated Phospholipases A2: A Biotechnological Tool to Improve the Production of Antibodies,C.L.S.Guimaraes,˜ S. H. Andriao-Escarso,L.S.Moreira-Dill,B.M.A.Carvalho,D.P.Marchi-Salvador,N.A.Santos-Filho,˜ C. A. H. Fernandes, M. R. M. Fontes, J. R. Giglio, B. Barraviera, J. P. Zuliani, C. F. C. Fernandes, L. A. Calderon,´ R. G. Stabeli,´ F. Albericio, S. L. da Silva, and A. M. Soares Volume 2014, Article ID 981923, 12 pages Biochemical and Functional Characterization of Parawixia bistriata Spider Venom with Potential Proteolytic and Larvicidal Activities, Gizeli S. Gimenez, Antonio Coutinho-Neto, Anderson M. Kayano, Rodrigo Simoes-Silva,˜ Frances Trindade, Alexandre de Almeida e Silva, Silvana Marcussi, Saulo L. da Silva, Carla F. C. Fernandes, Juliana P. Zuliani, Leonardo A. Calderon, Andreimar M. Soares, and Rodrigo G. Stabeli´ Volume2014,ArticleID950538,13pages Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry, Luiz Fernando M. Izidoro, Juliana C. Sobrinho, Mirian M. Mendes, Tassia´ R. Costa, Amy N. Grabner, Veridiana M. Rodrigues, Saulo L. da Silva, Fernando B. Zanchi, Juliana P. Zuliani, Carla F. C. Fernandes, Leonardo A. Calderon, Rodrigo G. Stabeli,´ and Andreimar M. Soares Volume 2014, Article ID 196754, 19 pages Purification and Biochemical Characterization of Three Myotoxins from Bothrops mattogrossensis Snake Venom with Toxicity against Leishmania and Tumor Cells,Andrea´ A. de Moura, Anderson M. Kayano, George A. Oliveira, Sulamita S. Setubal,´ Joao˜ G. Ribeiro, Neuza B. Barros, Roberto Nicolete, Laura A. Moura, Andre L. Fuly, Auro Nomizo, Saulo L. da Silva, Carla F. C. Fernandes, Juliana P. Zuliani, Rodrigo G. Stabeli,´ Andreimar M. Soares, and Leonardo A. Calderon Volume2014,ArticleID195356,13pages Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom, Kayena D. Zaqueo, Anderson M. Kayano, Rodrigo Simoes-Silva,˜ Leandro S. Moreira-Dill, Carla F. C. Fernandes, AndreL.Fuly,Vin´ ´ıcius G. Maltarollo, Kathia M. Honorio,´ Saulo L. da Silva, Gerardo Acosta, Maria Antonia O. Caballol, Eliandre de Oliveira, Fernando Albericio, Leonardo A. Calderon, Andreimar M. Soares, and Rodrigo G. Stabeli´ Volume 2014, Article ID 595186, 13 pages A Novel Phospholipase A2 (D49) from the Venom of the Crotalus oreganus abyssus (North American Grand Canyon Rattlesnake),W.Martins,P.A.Baldasso,K.M.Honorio,V.G.Maltarollo,´ R. I. M. A. Ribeiro, B. M. A. Carvalho, A. M. Soares, L. A. Calderon, R. G. Stabeli,´ M. A. O. Caballol, G. Acosta, E. Oliveira, S. Marangoni, F. Albericio, and S. L. Da Silva Volume 2014, Article ID 654170, 15 pages Antitumoral Activity of Snake Venom Proteins: New Trends in Cancer Therapy,LeonardoA.Calderon, JulianaC.Sobrinho,KayenaD.Zaqueo,AndreaA.deMoura,AmyN.Grabner,Maur´ıcio V. Mazzi, Silvana Marcussi, Auro Nomizo, Carla F. C. Fernandes, Juliana P. Zuliani, Bruna M. A. Carvalho, Saulo L. da Silva, Rodrigo G. Stabeli,´ and Andreimar M. Soares Volume 2014, Article ID 203639, 19 pages Activation of J77A.1 Macrophages by Three Phospholipases2 A Isolated from Bothrops atrox Snake Venom, Juliana L. Furtado, George A. Oliveira, Adriana S. Pontes, Sulamita da S. Setubal,CarolineV.Xavier,´ Fabianne Lacouth-Silva, Beatriz F. Lima, Kayena D. Zaqueo, Anderson M. Kayano, Leonardo A. Calderon, Rodrigo G. Stabeli,´ Andreimar M. Soares, and Juliana P. Zuliani Volume2014,ArticleID683123,13pages Inhibitory Effect of Plant Manilkara subsericea against Biological Activities of Lachesis muta Snake Venom, Eduardo Coriolano De Oliveira, Caio Pinho Fernandes, Eladio Flores Sanchez, Leandro Rocha, and AndreLopesFuly´ Volume 2014, Article ID 408068, 7 pages Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules, B.M.A.Carvalho,J.D.L.Santos,B.M.Xavier,J.R.Almeida,L.M.Resende,W.Martins, S.Marcussi,S.Marangoni,R.G.Stabeli,L.A.Calderon,A.M.Soares,S.L.DaSilva,´ and D. P. Marchi-Salvador Volume 2013, Article ID 153045, 8 pages Rapid Purification and Procoagulant and Platelet Aggregating Activities of Rhombeobin: A Thrombin-Like/Gyroxin-Like Enzyme from Lachesis muta rhombeata Snake Venom, Frank Denis Torres-Huaco, Claudio´ C. Werneck, Cristina Pontes Vicente, Talita Vassequi-Silva, Ana Claudia´ Coelho Nery-Diez, Camila B. Mendes, Edson Antunes, Sergio´ Marangoni, and Daniela C. S. Damico Volume 2013, Article ID 903292, 12 pages Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 951561, 2 pages http://dx.doi.org/10.1155/2014/951561 Editorial Animal Toxins and Their Advantages in Biotechnology and Pharmacology S. L. Da Silva,1 E. G. Rowan,2 F. Albericio,3,4,5 R. G. Stábeli,6 L. A. Calderon,6 and A. M. Soares6 1 Department of Chemistry, Biochemistry and Bioprocess Engineering, Federal University of Sao˜ Joao˜ del-Rei, Campus Alto Paraopeba, 34420-000 Ouro Branco, MG, Brazil 2 Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK 3 Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain 4 CIBER-BBN, Barcelona Science Park, University of Barcelona, 08028 Barcelona, Spain 5 Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain 6 Center of Biomolecules Study Applied to Health, Fiocruz Rondonia,ˆ Oswaldo Cruz Foundation, Medicine Department, Federal University of Rondonia,ˆ 76812-245 Porto Velho, RO, Brazil Correspondence should be addressed to S. L. Da Silva; [email protected] Received 13 March 2014; Accepted 13 March 2014; Published 22 May 2014 Copyright © 2014 S. L. Da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Biodiversity provides a huge source of new chemical entities variation, feeding, and individual intrinsic characteristics that could be useful for the development of new therapies. An that produce intraspecific variations. example is venomous animals, which produce venoms that The study of toxins and their isoforms has allowed for sharecommonfeatures,suchascompositionscharacterized a better understanding of the toxic mechanisms of enveno- by a complex combination of bioactive proteins and peptides mation. The identification/characterization of different iso- with wide structural diversity. The biological activities of forms of venom toxins, along with the search for natural thesecompoundsareselectiveandspecificandarecurrently and synthetic inhibitors, such as monoclonal or polyclonal dependent on the synergic action of several components. antibodies, and molecules with different chemical properties, Thus, animal venoms are important tools for carrying out such as heparin, clotting factors, and plant extracts, has biochemical, physiological, and pathological studies, as well increased the possibility of using these agents as more asforthedevelopmentofnewbiotechnologicalandpharma- effective therapeutic alternatives. ceutical products. More recently, venomics has focused on better under- The modern approach used to characterize various com- standing of the clinical aspects of human envenomation, pounds from animal venoms, using advanced proteomic and the mechanism of action of venoms and their toxins, the genomic tools, has been denominated “venomics.” Modern prospection of toxins with biotechnological/pharmaceutical technologies currently available in several research laborato- potential, and the development of novel antivenom serum ries have allowed scientists to obtain the identification and and alternative therapies for envenomation. functional-structural characterization of hundreds of toxins Among venom toxic components, phospholipases A2,L- from snakes, scorpions, spiders, anurans, and marine inver- aminoacidoxidases,andproteolyticenzymes,whichare tebrates, presenting a high diversity of pharmacological activ- classified as metalloproteases and serine proteases, are able ities. Venomics delineates a scientific area of high complexity to disrupt the human haemostatic system through different that is increased by the diversity of venom proteins and the mechanisms. Nonenzymatic proteins, such as disintegrins influence imposed by age, geographic location, ontogenetic and bradykinin-potentiating peptides (BPPs), and other 2 BioMed Research
Recommended publications
  • Phylogenetic Diversity, Habitat Loss and Conservation in South
    Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1108–1119 BIODIVERSITY Phylogenetic diversity, habitat loss and RESEARCH conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias) Jessica Fenker1, Leonardo G. Tedeschi1, Robert Alexander Pyron2 and Cristiano de C. Nogueira1*,† 1Departamento de Zoologia, Universidade de ABSTRACT Brasılia, 70910-9004 Brasılia, Distrito Aim To analyze impacts of habitat loss on evolutionary diversity and to test Federal, Brazil, 2Department of Biological widely used biodiversity metrics as surrogates for phylogenetic diversity, we Sciences, The George Washington University, 2023 G. St. NW, Washington, DC 20052, study spatial and taxonomic patterns of phylogenetic diversity in a wide-rang- USA ing endemic Neotropical snake lineage. Location South America and the Antilles. Methods We updated distribution maps for 41 taxa, using species distribution A Journal of Conservation Biogeography models and a revised presence-records database. We estimated evolutionary dis- tinctiveness (ED) for each taxon using recent molecular and morphological phylogenies and weighted these values with two measures of extinction risk: percentages of habitat loss and IUCN threat status. We mapped phylogenetic diversity and richness levels and compared phylogenetic distances in pitviper subsets selected via endemism, richness, threat, habitat loss, biome type and the presence in biodiversity hotspots to values obtained in randomized assemblages. Results Evolutionary distinctiveness differed according to the phylogeny used, and conservation assessment ranks varied according to the chosen proxy of extinction risk. Two of the three main areas of high phylogenetic diversity were coincident with areas of high species richness. A third area was identified only by one phylogeny and was not a richness hotspot. Faunal assemblages identified by level of endemism, habitat loss, biome type or the presence in biodiversity hotspots captured phylogenetic diversity levels no better than random assem- blages.
    [Show full text]
  • Herpetofauna of Serra Do Timbó, an Atlantic Forest Remnant in Bahia State, Northeastern Brazil
    Herpetology Notes, volume 12: 245-260 (2019) (published online on 03 February 2019) Herpetofauna of Serra do Timbó, an Atlantic Forest remnant in Bahia State, northeastern Brazil Marco Antonio de Freitas1, Thais Figueiredo Santos Silva2, Patrícia Mendes Fonseca3, Breno Hamdan4,5, Thiago Filadelfo6, and Arthur Diesel Abegg7,8,* Originally, the Atlantic Forest Phytogeographical The implications of such scarce knowledge on the Domain (AF) covered an estimated total area of conservation of AF biodiversity are unknown, but they 1,480,000 km2, comprising 17% of Brazil’s land area. are of great concern (Lima et al., 2015). However, only 160,000 km2 of AF still remains, the Historical data on deforestation show that 11% of equivalent to 12.5% of the original forest (SOS Mata AF was destroyed in only ten years, leading to a tragic Atlântica and INPE, 2014). Given the high degree of estimate that, if this rhythm is maintained, in fifty years threat towards this biome, concomitantly with its high deforestation will completely eliminate what is left of species richness and significant endemism, AF has AF outside parks and other categories of conservation been classified as one of twenty-five global biodiversity units (SOS Mata Atlântica, 2017). The future of the AF hotspots (e.g., Myers et al., 2000; Mittermeier et al., will depend on well-planned, large-scale conservation 2004). Our current knowledge of the AF’s ecological strategies that must be founded on quality information structure is based on only 0.01% of remaining forest. about its remnants to support informed decision- making processes (Kim and Byrne, 2006), including the investigations of faunal and floral richness and composition, creation of new protected areas, the planning of restoration projects and the management of natural resources.
    [Show full text]
  • Anti-Inflammatory and Immune Regulatory Actions of Naja Naja
    toxins Review Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom Shu-Zhi Wang 1,2 and Zheng-Hong Qin 3,* 1 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; [email protected] 2 Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China 3 Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China * Correspondence: [email protected]; Tel./Fax: +86-512-65882071 Received: 23 December 2017; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Mosquitoes This Is the Year of the Mosquito
    Promoting an appreciation and understanding of insects and their relatives in the animal kingdom through public education and the development of an invertebrate education facility. Marchie’s Nursery is a great place to teach kids about insects! The Buzz . It is hard to believe it has been one year since we In the months ahead we’ll continue to build the wrote our first newsletter. What a year it has been! momentum that will be needed to reach our vision – We visited numerous classes and camps, expanded educating the public about insects and their relatives, our menagerie of bug ambassadors and brought them increasing community awareness and support, Marchie’s Nursery is a great place to teach kids about insects! to many community events, kept you up to date on searching for a location, expanding our circle of local insect sightings via Facebook, applied for and friends and supporters, and strengthening our received our 501(c)(3) non-profit status, grew our operations for the long-term. membership, began looking for a home for our We would like to thank everyone who has facility, and worked with a consultant to ready our supported our work by becoming a member, donating organization for the work ahead. Amongst all these time, following us on Facebook, or sharing their steps forward, this year also saw the loss of our friend enthusiasm for this vision. We wouldn’t be here and founding board member, Byron Weber. I know without you. he would be proud of our progress. ~ Jen Marangelo Insect In‐sight – Mosquitoes This is the year of the mosquito.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Rope Parasite” the Rope Parasite Parasites: Nearly Every AuSC Child I Ever Treated Proved to Carry a Significant Parasite Burden
    Au#sm: 2015 Dietrich Klinghardt MD, PhD Infec4ons and Infestaons Chronic Infecons, Infesta#ons and ASD Infec4ons affect us in 3 ways: 1. Immune reac,on against the microbes or their metabolic products Treatment: low dose immunotherapy (LDI, LDA, EPD) 2. Effects of their secreted endo- and exotoxins and metabolic waste Treatment: colon hydrotherapy, sauna, intes4nal binders (Enterosgel, MicroSilica, chlorella, zeolite), detoxificaon with herbs and medical drugs, ac4vaon of detox pathways by solving underlying blocKages (methylaon, etc.) 3. Compe,,on for our micronutrients Treatment: decrease microbial load, consider vitamin/mineral protocol Lyme, Toxins and Epigene#cs • In 2000 I examined 10 au4s4c children with no Known history of Lyme disease (age 3-10), with the IgeneX Western Blot test – aer successful treatment. 5 children were IgM posi4ve, 3 children IgG, 2 children were negave. That is 80% of the children had clinical Lyme disease, none the history of a 4cK bite! • Why is it taking so long for au4sm-literate prac44oners to embrace the fact, that many au4s4c children have contracted Lyme or several co-infec4ons in the womb from an oVen asymptomac mother? Why not become Lyme literate also? • Infec4ons can be treated without the use of an4bio4cs, using liposomal ozonated essen4al oils, herbs, ozone, Rife devices, PEMF, colloidal silver, regular s.c injecons of artesunate, the Klinghardt co-infec4on cocKtail and more. • Symptomac infec4ons and infestaons are almost always the result of a high body burden of glyphosate, mercury and aluminum - against the bacKdrop of epigene4c injuries (epimutaons) suffered in the womb or from our ancestors( trauma, vaccine adjuvants, worK place related lead, aluminum, herbicides etc., electromagne4c radiaon exposures etc.) • Most symptoms are caused by a confused upregulated immune system (molecular mimicry) Toxins from a toxic environment enter our system through damaged boundaries and membranes (gut barrier, blood brain barrier, damaged endothelium, etc.).
    [Show full text]
  • Amphiphilic B-Sheet Cobra Cardiotoxin Targets Mitochondria and Disrupts Its Network
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector FEBS 29626 FEBS Letters 579 (2005) 3169–3174 Amphiphilic b-sheet cobra cardiotoxin targets mitochondria and disrupts its network Chia-Hui Wang, Wen-guey Wu* Department of Life Sciences, Institute of Bioinformatics and Structural Biology, National Tsinghua University, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan Received 29 March 2005; revised 2 May 2005; accepted 2 May 2005 Available online 23 May 2005 Edited by Maurice Montal brane is likely to be involved in the CTX-induced perturbation Abstract Recent advance in understanding the role of toxin proteins in controlling cell death has revealed that pro-apoptotic of cytosolic calcium homeostasis and hypercontracture in rat viral proteins targeting mitochondria contain amphiphilic a-heli- ventricular myocytes [5,10]; however, evidence indicating ces with pore-forming properties. Herein, we describe that the that CTX may target intracellular organelle within the cell is pore-forming amphiphilic b-sheet cardiotoxins (or cytotoxins, lacking. CTXs) from Taiwan cobra (Naja atra) also target mitochondrial A large number of protein toxins from bacteria and virus membrane after internalization and act synergistically with have been extensively studied in order to understand their CTX-induced cytosolic calcium increase to disrupt mitochondria mechanism of action as well as of intracellular membrane network. It is suggested that CTX-induced fragmentation of trafficking [11–13]. For instance, cholera toxin and related mitochondria play a role in controlling CTX-induced necrosis AB5-subunit bacterial toxin have been shown to follow a of myocytes and cause severe tissue necrosis in the victims.
    [Show full text]
  • Characterization of a Novel Metalloproteinase in Duvernoy's Gland of Rhabdophis Tigrinus Tigrinus
    The Journal of Toxicological Sciences, 157 Vol.31, No.2, 157-168, 2006 CHARACTERIZATION OF A NOVEL METALLOPROTEINASE IN DUVERNOY’S GLAND OF RHABDOPHIS TIGRINUS TIGRINUS Koji KOMORI1, Motomi KONISHI1, Yuji MARUTA1, Michihisa TORIBA2, Atsushi SAKAI2, Akira MATSUDA3, Takamitsu HORI3, Mitsuko NAKATANI4, Naoto MINAMINO4 and Toshifumi AKIZAWA1 1Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan 2The Japan Snake Institute, 3318 Yabuzuka Ota, Gunma 379-2301, Japan 3Department of Biochemistry, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure, Hiroshima 737-0112, Japan 4Department of Pharmacology, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan (Received January 31, 2006; Accepted February 20, 2006) ABSTRACT — During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigri- nus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molec- ular weight of 38 kDa in the Duvernoy’s gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA2pr(Dnp)AR-NH2, which was developed for measuring the well-known matrix metalloproteinase (MMP) activity. After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affin- ity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9. The 38 kDa metalloproteinase required Zn2+ and Ca2+ ions for its proteolytic activity.
    [Show full text]
  • Final Program N
    XXII Congress The International Society on Thrombosis and Haemostasis B July 11-16 2009 O 55th Annual Meeting S of the Scientific and Standardization Committee of the ISTH T O Final Program N Boston - July 11-16 2009 XXII Congress of the International Society on Thrombosis and Haemostasis 2009 Table ISTH of Contents Venue and Contacts 2 Wednesday 209 Welcome Messages 3 – Plenary Lectures 210 Committees 7 – State of the Art Lectures 210 Congress Awards and Grants 15 – Abstract Symposia Lectures 212 Other Meetings 19 – Oral Communications 219 – Posters 239 ISTH Information 20 Program Overview 21 Thursday 305 SSC Meetings and – Plenary Lectures 306 Educational Sessions 43 – State of the Art Lectures 306 – Abstract Symposia Lectures 309 Scientific Program 89 – Oral Communications 316 Monday 90 – Posters 331 – Plenary Lectures 90 Nursing Program 383 – State of the Art Lectures 90 Special Symposia 389 – Abstract Symposia Lectures 92 Satellite Symposia 401 – Oral Communications 100 – Posters 118 Technical Symposia Sessions 411 Exhibition and Sponsors 415 Tuesday 185 – Plenary Lectures 186 Exhibitor and Sponsor Profiles 423 – State of the Art Lectures 186 Congress Information 445 – Abstract Symposia Lectures 188 Map of BCEC 446 – Oral Communications 196 Hotel and Transportation Information 447 ISTH 2009 Congress Information 452 Boston Information 458 Social Events 463 Excursions 465 Authors’ Index 477 1 Venue & Contacts Venue Boston Convention & Exhibition Center 415 Summer Street - Boston, Massachusetts 02210 - USA Phone: +1 617 954 2800 - Fax: +1 617 954 3326 The BCEC is only about 10 minutes by taxi from Boston Logan International Airport. The 2009 Exhibition is located in Hall A and B of the Exhibit Level of the BCEC, along with posters and catering.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0191272 A1 Stemmer Et Al
    US 200701.91272A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0191272 A1 Stemmer et al. (43) Pub. Date: Aug. 16, 2007 (54) PROTEINACEOUS PHARMACEUTICALS Publication Classification AND USES THEREOF (76) Inventors: Willem P.C. Stemmer, Los Gatos, CA (51) Int. Cl. (US); Volker Schellenberger, Palo A6II 38/16 (2006.01) Alto, CA (US); Martin Bader, C40B 40/08 (2006.01) Mountain View, CA (US); Michael C40B 40/10 (2006.01) Scholle, Mountain View, CA (US) C07K I4/47 (2006.01) (52) U.S. Cl. ................. 514/12: 435/7.1: 435/6; 530/324 Correspondence Address: WILSON SONSN GOODRCH & ROSAT 650 PAGE MILL ROAD (57) ABSTRACT PALO ALTO, CA 94304-1050 (US) (21) Appl. No.: 11/528,927 The present invention provides cysteine-containing scaf folds and/or proteins, expression vectors, host cell and (22) Filed: Sep. 27, 2006 display systems harboring and/or expressing such cysteine containing products. The present invention also provides Related U.S. Application Data methods of designing libraries of Such products, methods of (60) Provisional application No. 60/721,270, filed on Sep. screening Such libraries to yield entities exhibiting binding 27, 2005. Provisional application No. 60/721,188, specificities towards a target molecule. Further provided by filed on Sep. 27, 2005. Provisional application No. the invention are pharmaceutical compositions comprising 60/743,622, filed on Mar. 21, 2006. the cysteine-containing products of the present invention. Patent Application Publication Aug. 16, 2007 Sheet 1 of 46 US 2007/0191272 A1 Takara togra: Patent Application Publication Aug. 16, 2007 Sheet 2 of 46 US 2007/0191272 A1 FIG.
    [Show full text]
  • Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops Pirajai Snake Venom
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 595186, 13 pages http://dx.doi.org/10.1155/2014/595186 Research Article Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom Kayena D. Zaqueo,1 Anderson M. Kayano,1 Rodrigo Simões-Silva,1 Leandro S. Moreira-Dill,1 CarlaF.C.Fernandes,1 André L. Fuly,2 Vinícius G. Maltarollo,3 Kathia M. Honório,3,4 Saulo L. da Silva,5 Gerardo Acosta,6,7 Maria Antonia O. Caballol,8 Eliandre de Oliveira,8 Fernando Albericio,6,7,9,10 Leonardo A. Calderon,1 Andreimar M. Soares,1 and Rodrigo G. Stábeli1 1 Centro de Estudos de Biomoleculas´ Aplicadas aSa` ude,´ CEBio, Fundac¸ao˜ Oswaldo Cruz, Fiocruz Rondoniaˆ e Departamento de Medicina, Universidade Federal de Rondonia,UNIR,RuadaBeira7176,ˆ Bairro Lagoa, 76812-245 Porto Velho, RO, Brazil 2 DepartmentodeBiologiaCelulareMolecular,InstitutodeBiologia, Universidade Federal Fluminense, 24210-130 Niteroi, RJ, Brazil 3 Centro de Cienciasˆ Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo Andre,´ SP, Brazil 4 Escola de Artes, Cienciasˆ e Humanidades, USP, 03828-000 Sao˜ Paulo, SP, Brazil 5 Universidade Federal de Sao˜ Joao˜ Del Rei, UFSJ, Campus Alto Paraopeba, 36420-000 Ouro Branco, MG, Brazil 6 Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain 7 CIBER-BBN, Barcelona Science Park, 08028 Barcelona, Spain 8 Proteomic Platform, Barcelona Science Park, 08028 Barcelona, Spain 9 Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain 10SchoolofChemistry,UniversityofKwaZuluNatal,Durban4001,SouthAfrica Correspondence should be addressed to Andreimar M. Soares; [email protected] and Rodrigo G.abeli; St´ [email protected] Received 9 July 2013; Revised 20 September 2013; Accepted 1 December 2013; Published 26 February 2014 Academic Editor: Edward G.
    [Show full text]