Neural Computation for Rehabilitation Animal Toxins and Their Advantages in Biotechnology and Pharmacology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Diversity, Habitat Loss and Conservation in South
Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1108–1119 BIODIVERSITY Phylogenetic diversity, habitat loss and RESEARCH conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias) Jessica Fenker1, Leonardo G. Tedeschi1, Robert Alexander Pyron2 and Cristiano de C. Nogueira1*,† 1Departamento de Zoologia, Universidade de ABSTRACT Brasılia, 70910-9004 Brasılia, Distrito Aim To analyze impacts of habitat loss on evolutionary diversity and to test Federal, Brazil, 2Department of Biological widely used biodiversity metrics as surrogates for phylogenetic diversity, we Sciences, The George Washington University, 2023 G. St. NW, Washington, DC 20052, study spatial and taxonomic patterns of phylogenetic diversity in a wide-rang- USA ing endemic Neotropical snake lineage. Location South America and the Antilles. Methods We updated distribution maps for 41 taxa, using species distribution A Journal of Conservation Biogeography models and a revised presence-records database. We estimated evolutionary dis- tinctiveness (ED) for each taxon using recent molecular and morphological phylogenies and weighted these values with two measures of extinction risk: percentages of habitat loss and IUCN threat status. We mapped phylogenetic diversity and richness levels and compared phylogenetic distances in pitviper subsets selected via endemism, richness, threat, habitat loss, biome type and the presence in biodiversity hotspots to values obtained in randomized assemblages. Results Evolutionary distinctiveness differed according to the phylogeny used, and conservation assessment ranks varied according to the chosen proxy of extinction risk. Two of the three main areas of high phylogenetic diversity were coincident with areas of high species richness. A third area was identified only by one phylogeny and was not a richness hotspot. Faunal assemblages identified by level of endemism, habitat loss, biome type or the presence in biodiversity hotspots captured phylogenetic diversity levels no better than random assem- blages. -
Herpetofauna of Serra Do Timbó, an Atlantic Forest Remnant in Bahia State, Northeastern Brazil
Herpetology Notes, volume 12: 245-260 (2019) (published online on 03 February 2019) Herpetofauna of Serra do Timbó, an Atlantic Forest remnant in Bahia State, northeastern Brazil Marco Antonio de Freitas1, Thais Figueiredo Santos Silva2, Patrícia Mendes Fonseca3, Breno Hamdan4,5, Thiago Filadelfo6, and Arthur Diesel Abegg7,8,* Originally, the Atlantic Forest Phytogeographical The implications of such scarce knowledge on the Domain (AF) covered an estimated total area of conservation of AF biodiversity are unknown, but they 1,480,000 km2, comprising 17% of Brazil’s land area. are of great concern (Lima et al., 2015). However, only 160,000 km2 of AF still remains, the Historical data on deforestation show that 11% of equivalent to 12.5% of the original forest (SOS Mata AF was destroyed in only ten years, leading to a tragic Atlântica and INPE, 2014). Given the high degree of estimate that, if this rhythm is maintained, in fifty years threat towards this biome, concomitantly with its high deforestation will completely eliminate what is left of species richness and significant endemism, AF has AF outside parks and other categories of conservation been classified as one of twenty-five global biodiversity units (SOS Mata Atlântica, 2017). The future of the AF hotspots (e.g., Myers et al., 2000; Mittermeier et al., will depend on well-planned, large-scale conservation 2004). Our current knowledge of the AF’s ecological strategies that must be founded on quality information structure is based on only 0.01% of remaining forest. about its remnants to support informed decision- making processes (Kim and Byrne, 2006), including the investigations of faunal and floral richness and composition, creation of new protected areas, the planning of restoration projects and the management of natural resources. -
Anti-Inflammatory and Immune Regulatory Actions of Naja Naja
toxins Review Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom Shu-Zhi Wang 1,2 and Zheng-Hong Qin 3,* 1 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; [email protected] 2 Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China 3 Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China * Correspondence: [email protected]; Tel./Fax: +86-512-65882071 Received: 23 December 2017; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Mosquitoes This Is the Year of the Mosquito
Promoting an appreciation and understanding of insects and their relatives in the animal kingdom through public education and the development of an invertebrate education facility. Marchie’s Nursery is a great place to teach kids about insects! The Buzz . It is hard to believe it has been one year since we In the months ahead we’ll continue to build the wrote our first newsletter. What a year it has been! momentum that will be needed to reach our vision – We visited numerous classes and camps, expanded educating the public about insects and their relatives, our menagerie of bug ambassadors and brought them increasing community awareness and support, Marchie’s Nursery is a great place to teach kids about insects! to many community events, kept you up to date on searching for a location, expanding our circle of local insect sightings via Facebook, applied for and friends and supporters, and strengthening our received our 501(c)(3) non-profit status, grew our operations for the long-term. membership, began looking for a home for our We would like to thank everyone who has facility, and worked with a consultant to ready our supported our work by becoming a member, donating organization for the work ahead. Amongst all these time, following us on Facebook, or sharing their steps forward, this year also saw the loss of our friend enthusiasm for this vision. We wouldn’t be here and founding board member, Byron Weber. I know without you. he would be proud of our progress. ~ Jen Marangelo Insect In‐sight – Mosquitoes This is the year of the mosquito. -
MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date. -