Privileged Frameworks from Snake Venom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain. -
Anti-Inflammatory and Immune Regulatory Actions of Naja Naja
toxins Review Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom Shu-Zhi Wang 1,2 and Zheng-Hong Qin 3,* 1 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; [email protected] 2 Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China 3 Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China * Correspondence: [email protected]; Tel./Fax: +86-512-65882071 Received: 23 December 2017; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases. -
Deletion of Vax1 from Gonadotropin-Releasing Hormone (Gnrh) Neurons Abolishes Gnrh Expression and Leads to Hypogonadism and Infertility
3506 • The Journal of Neuroscience, March 23, 2016 • 36(12):3506–3518 Cellular/Molecular Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility Hanne M. Hoffmann,1 Crystal Trang,1 Ping Gong,1 Ikuo Kimura,2 Erica C. Pandolfi,1 and XPamela L. Mellon1 1Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, and 2Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Japan Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regu- lates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development, Vax1flox mice were generated and lineage tracing performed in Vax1flox/flox:GnRHcre:RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1. The absence of GnRH staining in adult Vax1flox/flox:GnRHcre mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. -
Loss-Of-Function Mutation in the Prokineticin 2 Gene Causes
Loss-of-function mutation in the prokineticin 2 gene SEE COMMENTARY causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism Nelly Pitteloud*†, Chengkang Zhang‡, Duarte Pignatelli§, Jia-Da Li‡, Taneli Raivio*, Lindsay W. Cole*, Lacey Plummer*, Elka E. Jacobson-Dickman*, Pamela L. Mellon¶, Qun-Yong Zhou‡, and William F. Crowley, Jr.* *Reproductive Endocrine Unit, Department of Medicine and Harvard Reproductive Endocrine Science Centers, Massachusetts General Hospital, Boston, MA 02114; ‡Department of Pharmacology, University of California, Irvine, CA 92697; §Department of Endocrinology, Laboratory of Cellular and Molecular Biology, Institute of Molecular Pathology and Immunology, University of Porto, San Joa˜o Hospital, 4200-465 Porto, Portugal; and ¶Departments of Reproductive Medicine and Neurosciences, University of California at San Diego, La Jolla, CA 92093 Communicated by Patricia K. Donahoe, Massachusetts General Hospital, Boston, MA, August 14, 2007 (received for review May 8, 2007) Gonadotropin-releasing hormone (GnRH) deficiency in the human associated with KS, although no functional data on the mutant presents either as normosmic idiopathic hypogonadotropic hypo- proteins were provided (17). Herein, we demonstrate that homozy- gonadism (nIHH) or with anosmia [Kallmann syndrome (KS)]. To gous loss-of-function mutations in the PROK2 gene cause IHH in date, several loci have been identified to cause these disorders, but mice and humans. only 30% of cases exhibit mutations in known genes. Recently, murine studies have demonstrated a critical role of the prokineticin Results pathway in olfactory bulb morphogenesis and GnRH secretion. Molecular Analysis of PROK2 Gene. A homozygous single base pair Therefore, we hypothesize that mutations in prokineticin 2 deletion in exon 2 of the PROK2 gene (c.[163delA]ϩ [163delA]) (PROK2) underlie some cases of KS in humans and that animals was identified in the proband, in his brother with KS, and in his deficient in Prok2 would be hypogonadotropic. -
Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice
Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Xiao, Ling, Chengkang Zhang, Xiaohan Li, Shiaoching Gong, Renming Hu, Ravikumar Balasubramanian, William F. Crowley W. Jr., Michael H. Hastings, and Qun-Yong Zhou. 2014. “Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice.” PLoS ONE 9 (3): e90860. doi:10.1371/journal.pone.0090860. http:// dx.doi.org/10.1371/journal.pone.0090860. Published Version doi:10.1371/journal.pone.0090860 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12064464 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice Ling Xiao1,2, Chengkang Zhang1, Xiaohan Li1, Shiaoching Gong3, Renming Hu4, Ravikumar Balasubramanian5, William F. Crowley W. Jr.5, Michael H. Hastings6, Qun-Yong Zhou1* 1 Department of Pharmacology, University of California, Irvine, California, United States of America, 2 Department of Endocrinology, Jinshan Hospital affiliated to Fudan University, Shanghai, China, 3 GENSAT Project, The Rockefeller University, New York, New York, United States of America, 4 Institute of Endocrinology and Diabetology, Huashan Hospital affiliated to Fudan University, Shanghai, China, 5 Harvard Reproductive Endocrine Sciences Center & The Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 6 Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract The possible signaling role of prokineticin 2 (PK2) and its receptor, prokineticin receptor 2 (PKR2), on female reproduction was investigated. -
Orphan G Protein-Coupled Receptors and Obesity
European Journal of Pharmacology 500 (2004) 243–253 www.elsevier.com/locate/ejphar Review Orphan G protein-coupled receptors and obesity Yan-Ling Xua, Valerie R. Jacksonb, Olivier Civellia,b,* aDepartment of Pharmacology, University of California Irvine, 101 Theory Dr., Suite 200, Irvine, CA 92612, USA bDepartment of Developmental and Cell Biology, University of California Irvine, 101 Theory Dr, Irvine, CA 92612, USA Accepted 1 July 2004 Available online 19 August 2004 Abstract The use of orphan G protein-coupled receptors (GPCRs) as targets to identify new transmitters has led over the last decade to the discovery of 12 novel neuropeptide families. Each one of these new neuropeptides has opened its own field of research, has brought new insights in distinct pathophysiological conditions and has offered new potentials for therapeutic applications. Interestingly, several of these novel peptides have seen their roles converge on one physiological response: the regulation of food intake and energy expenditure. In this manuscript, we discuss four deorphanized GPCR systems, the ghrelin, orexins/hypocretins, melanin-concentrating hormone (MCH) and neuropeptide B/neuropeptide W (NPB/NPW) systems, and review our knowledge of their role in the regulation of energy balance and of their potential use in therapies directed at feeding disorders. D 2004 Elsevier B.V. All rights reserved. Keywords: Feeding; Ghrelin; Orexin/hypocretin; Melanin-concentrating hormone; Neuropeptide B; Neuropeptide W Contents 1. Introduction............................................................ 244 2. Searching for the natural ligands of orphan GPCRs ....................................... 244 2.1. Reverse pharmacology .................................................. 244 2.2. Orphan receptor strategy ................................................. 244 3. Orphan receptors and obesity................................................... 245 3.1. The ghrelin system .................................................... 245 3.2. -
(PROK2) in Alzheimer's Disease
cells Communication Involvement of the Chemokine Prokineticin-2 (PROK2) in Alzheimer’s Disease: From Animal Models to the Human Pathology Roberta Lattanzi 1, Daniela Maftei 1, Carla Petrella 2, Massimo Pieri 3, Giulia Sancesario 4, Tommaso Schirinzi 5, Sergio Bernardini 3, Christian Barbato 2 , Massimo Ralli 6 , Antonio Greco 6, Roberta Possenti 5, Giuseppe Sancesario 5 and Cinzia Severini 2,* 1 Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.za A. Moro 5, 00185 Rome, Italy; [email protected] (R.L.); [email protected] (D.M.) 2 Institute of Biochemistry and Cell Biology, IBBC, CNR, Viale del Policlinico, 155, 00161 Rome, Italy; [email protected] (C.P.); [email protected] (C.B.) 3 Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (M.P.); [email protected] (S.B.) 4 Neuroimmunology Unit, IRCCS Santa Lucia Foundation, v. Ardeatina 354, 00179 Rome, Italy; [email protected] 5 Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (T.S.); [email protected] (R.P.); [email protected] (G.S.) 6 Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy; [email protected] (M.R.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +39-06-4997-6742 Received: 17 October 2019; Accepted: 12 November 2019; Published: 13 November 2019 Abstract: Among mediators of inflammation, chemokines play a pivotal role in the neuroinflammatory process related to Alzheimer’s disease (AD). -