ACTIVIN IS CRITICAL for the DEVELOPMENT of PAIN HYPERSENSITIVITY AFTER INFLAMMATION by PIN XU Submitted in Partial Fulfillment

Total Page:16

File Type:pdf, Size:1020Kb

ACTIVIN IS CRITICAL for the DEVELOPMENT of PAIN HYPERSENSITIVITY AFTER INFLAMMATION by PIN XU Submitted in Partial Fulfillment ACTIVIN IS CRITICAL FOR THE DEVELOPMENT OF PAIN HYPERSENSITIVITY AFTER INFLAMMATION by PIN XU Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Thesis Adviser: Dr. Alison K. Hall Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY August, 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ____Pin Xu______________________________________________ candidate for the Ph.D. degree *. (signed)__ Gary Landreth______________________________ ___ (chair of the committee) ___Alison Hall____________________________________ ___Jerry Silver___________ ___________ _____ ___ ___Susann Brady-kalnay____________________________ ________________________________________________ ________________________________________________ (date) ____June 5, 2007___________________ *We also certify that written approval has been obtained for any proprietary material contained therein. ii DEDICATION This thesis is dedicated to my parents, Hongfa Xu and Ruiyun Pan, and to my husband Chen Liu. iii TABLE OF CONTENTS Page Title Page……………………..…………………………………………………….….…I Typed ETD Sign-off Sheet…………………………………………………….................II Dedication……………………………………………………………………………..…III Table of Contents………………………………………………………..……..……..….IV List of Tables……………………………………………………………………………VII List of Figures…………………………………………………………………….....…VIII Acknowledgements………………………………………………………………………X Abstract…………………………………………………………………………...……...XI Chapter I: General Introduction……………………………………………………………………...1 Chapter II: Activin induces tactile allodynia and increases CGRP upon peripheral inflammation…………………………………………………………………….………35 Abstract…………………………………………………………………………..36 Introduction………………………………………………………………………37 Methods and Materials…………………………………………………………...40 iv Results………………………………………………………………..…………..47 Summary…………………………………………………………………..……..54 Chapter III: Activin acutely sensitizes DRG neurons and induces hyperalgesia via sensitize of TRPV1………………………………………………………………………..…….……72 Abstract…………………………………………………………………….……..73 Introduction………………………………………………………………….……74 Methods and Materials…………………………………………………….……...76 Results………………………………………………………………..…………...80 Summary………………………………………………………………..…….…..83 Chapter IV: Activin regulates CGRP expression in both embryonic and adult DRG neurons …………………………………………………………………………………..94 Abstract…………………………………………………………………….……..95 Introduction……………………………………………………………….………96 Methods and Materials…………………………………………………….……...98 Results………………………………………………………………..…….……101 Summary……………………………………………………………………..….110 v Chapter V: General discussion…………………………………………………….………………..131 Bibliography………………………………………………………….………………...155 vi LIST OF TABLES Table No Page Table 1.1. Family members, Activin A, BMPs and TGFβ signal through some shared receptors and signaling components………………………………………………….33 vii LIST OF FIGURES Figure No. Page Figure 1.1. Sensory neurons respond to signals in skin for early differentiation, plasticity after wound and pain functions………………………………………………………....29 Figure 1.2. Activin and selected TGFβ family members, their receptors and signaling……………………………………………………………………….…..…....31 Figure 2.1. CFA induced inflammation. …………………………………………...…..58 Figure 2.2. Tracer labeled CGRP-IR neurons in the L4 DRG……………………..…...60 Figure 2.3. CGRP expression in different subpopulations of L4 DRG neurons………..62 Figure 2.4. The effect of inflammation on the size distribution of sensory neurons innervating ankle skin……………………………………………………………….......64 Figure 2.5. Central projections of CGRP-IR fibers after localized inflammation………66 Figure 2.6. Activin A or NGF injection induces tactile allodynia…………………..…..68 Figure 2.7 Activin induces CGRP in the innervating DRG neurons………….…….......70 Figure 3.1. Activin A acutely sensitizes the capsaicin induced current in the cultured DRG neurons through the activin type I receptor AcRIB……………………….……....88 Figure 3.2. Activin A causes translocation of PKCδ to cell membrane of rat DRG neurons…………………………………………………………………………………..90 viii Figure 3.3. Activin injection induces thermal hyperalgesia in wildtype, but not TRPV1 null mice……………………………………………………………………….………....92 Figure 4.1. Activin acts with NGF to induce CGRP mRNA in adult DRG cultures…...115 Figure 4.2. Activin effects on CGRP mRNA occur through its own receptor…………117 Figure 4.3. Activin signaling pathways in the adult sensory neurons……………….…119 Figure 4.4. Activin stimulates pSmad2 while NGF stimulates pERK2 in adult sensory neurons……………………………………………………………………….….…….. 122 Figure 4.5. NGF and activin signal through multiple MAPK pathways to regulate CGRP expression………………………………………………………………………….…...124 Figure 4.6. Activin increases CGRP mRNA in E14.5 DRG neuronal culture in a concentration dependent manner…………………………………….…………………126 Figure 4.7. Activin and NGF signaling pathways in embryonic sensory neurons…......128 ix ACKNOWLEGDEMENTS I would like to thank my thesis advisor, Dr. Alison Hall. She taught me with great patience how to do science and design critical experiments. I have learned tremendously from her during my Ph.D. training. Also she set up an excellent model for me as a working mother and scientist. Alison always encourages me to pursue my personal goal and offers her suggestions whenever I meet problems. I am really grateful for her help. I would also like to express my gratitude to members of my thesis committee, Drs. Gary Landreth, Jerry Silver and Susann Brady-Kalnay for all of their supports and great advices on my thesis. I want to thank our collaborators, Dr. Liliana Berti-Mattera (CASE), Dr. Andrew Russo (U. Iowa), Drs. Gerry Oxford and Weiguo Zhu (Stark Res. Inst.) I appreciate the help from people in the Neurosciences department throughout my Ph.D. training. Especially, I want to thank my current labmates, Shibani Mukerji and Ekaterina Katsman, who make the lab life pleasant and I really enjoy our conversations about both scientific topics and personal life. I thank formal Hall lab residents, Bethany Kiernan, Noah Haner and Rebecca Burke, who always offer their help. Finally, I thank my family members for their endless love and support. x Activin is Critical for the Development of Pain Hypersensitivity after Inflammation Abstract By PIN XU Inflammatory pain is a major clinical challenge. The perception of pain is initiated by specialized sensory neurons in the Dorsal Root Ganglia (DRG) called nociceptors. Upon injury, neuropeptides including Calcitonin Gene-Related Peptide (CGRP) are released from nociceptors and the neuropeptide contributes to the development of abnormal pain. The studies in this thesis focus on the role of activin in regulating pain after skin inflammation. In this study, experimental peripheral inflammation was accompanied by increases in activin mRNA and activin immunoreactivity in both keratinocytes and infiltrating immune cells. The number of CGRP containing DRG neurons increased after inflammation, and this increase was among neurons that expressed the lectin IB4 or TrkA. These data indicate that some adult sensory neurons remain plastic and can increase CGRP expression after inflammation or activin administration. Strikingly, activin administration also induced thermal hyperalgesia and mechanical allodynia pain behaviors. I demonstrated that activin induced thermal hyperalgesia involved the sensitization of nociceptors through the Transient Receptor Potential Vallinoid subtype 1 (TRPV1). In addition to changing acute pain behaviors, activin also regulated neuropeptide gene transcription over chronic periods. Activin and nerve growth factor (NGF) worked synergistically to increase CGRP mRNA in adult DRG cultures. xi Biochemical and pharmacological studies indicate that this synergy was initiated by independent stimulation of receptors and intracellular signals, and our data suggest that activin and NGF effects converge on the CGRP promoter to regulate CGRP expression. Taken together, these data demonstrate that increased activin expression after inflammation results in both acute pain behaviors through sensitizing nociceptors and prolonged pain regulation by increasing CGRP expression. xii Chapter I General Introduction 1 Inflammatory pain is a major medical challenge and can be difficult to manage clinically. Pain hypersensitivity is a key sign of inflammation and is not sufficiently controlled with commonly prescribed analgesics. Present studies demonstrate that activin A (activin) regulates a group of specialized sensory neurons sensing nociceptive information. This thesis will focus on the functions of activin in regulating pain sensation. In this section, a general introduction will review nociceptive sensation, neuropeptides important for pain sensation, the regulation of neuropeptides by activin and NGF and current approach for pain management. Perception is mediated by receptors, nervous pathways and specific areas in the brain. Our knowledge of the outside world starts from the senses which do not passively record the surrounding world, but process information via brain activity leading to perception. The sensory experience contains four basic types of information – modality, location, intensity and timing, all of which are encoded in the nervous system by specialized subgroups of neurons. Modality is determined by the type of transmitted energy and the receptors specialized to sense that energy. Sensory receptors transduce unique stimuli and convert them into specific electrical signals, which are conducted to the cortex to produce different perceptions.
Recommended publications
  • Altered Inflammatory Mediators in Fibromyalgia
    Cur gy: ren lo t o R t e a s e m a u r c e h h García et al., Rheumatology (Sunnyvale) 2017, 7:2 R Rheumatology: Current Research DOI: 10.4172/2161-1149.1000215 ISSN: 2161-1149 Review Article Open Access Altered Inflammatory Mediators in Fibromyalgia Juan José García1*, Julián Carvajal-Gil2, Aurora Herrero-Olea2 and Rafael Gómez-Galán2 1Department of Physiology, University Centre of Mérida, University of Extremadura, Mérida, Spain 2Department of Nursing, University Centre of Mérida, University of Extremadura, Mérida, Spain *Corresponding author: Dr. Juan José García, Department of Physiology, University Centre of Mérida, University of Extremadura, Mérida, Spain,Tel: 00 34 924289300, Ext: 86118; E-mail: [email protected] Received date: February 07, 2017; Accepted date: April 08, 2017; Published date: April 15, 2017 Copyright: ©2017 García JJ, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Fibromyalgia (FM) is a syndrome characterized by widespread chronic pain, tenderness, stiffness, fatigue, and sleep and mood disturbances. Current evidences suggest that inflammatory mediators may have an important role in the pathogenesis of fibromyalgia. Every day new evidences emerging of the role of the immune system and the inflammatory process in the pathophysiology of this disease. Thus, the aim of this work has been review that altered inductors, inflammatory mediators and effectors have been reported in fibromyalgia, and its relationship to disease’s symptoms. If in fibromyalgia underlies widespread disruption of most characteristic components on the inflammatory ´s process (endogenous inductors, mediators and effectors) is logical to think that fibromyalgia is producing a sustained inflammatory response in time, unregulated, responsible for the disease´s symptoms.
    [Show full text]
  • The Migraine Attack As a Homeostatic, Neuroprotective Response to Brain Oxidative Stress: Preliminary Evidence for a Theory
    ISSN 0017-8748 Headache doi: 10.1111/head.13214 VC 2017 American Headache Society Published by Wiley Periodicals, Inc. Views and Perspectives The Migraine Attack as a Homeostatic, Neuroprotective Response to Brain Oxidative Stress: Preliminary Evidence for a Theory Jonathan M. Borkum, PhD Background.—Previous research has suggested that migraineurs show higher levels of oxidative stress (lipid peroxides) between migraine attacks and that migraine triggers may further increase brain oxidative stress. Oxidative stress is trans- duced into a neural signal by the TRPA1 ion channel on meningeal pain receptors, eliciting neurogenic inflammation, a key event in migraine. Thus, migraines may be a response to brain oxidative stress. Results.—In this article, a number of migraine components are considered: cortical spreading depression, platelet acti- vation, plasma protein extravasation, endothelial nitric oxide synthesis, and the release of serotonin, substance P, calcitonin gene-related peptide, and brain-derived neurotrophic factor. Evidence is presented from in vitro research and animal and human studies of ischemia suggesting that each component has neuroprotective functions, decreasing oxidant production, upregulating antioxidant enzymes, stimulating neurogenesis, preventing apoptosis, facilitating mitochondrial biogenesis, and/or releasing growth factors in the brain. Feedback loops between these components are described. Limitations and challenges to the model are discussed. Conclusions.—The theory is presented that migraines are an integrated
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Sustained Sensitizing Effects of Tumor Necrosis Factor Alpha on Sensory Nerves in Lung and Airways Ruei-Lung Lin University of Kentucky, [email protected]
    University of Kentucky UKnowledge Physiology Faculty Publications Physiology 12-2017 Sustained Sensitizing Effects of Tumor Necrosis Factor Alpha on Sensory Nerves in Lung and Airways Ruei-Lung Lin University of Kentucky, [email protected] Qihai Gu Mercer University Mehdi Khosravi University of Kentucky, [email protected] Lu-Yuan Lee University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physiology_facpub Part of the Pharmacology Commons, Physiology Commons, Pulmonology Commons, and the Therapeutics Commons Repository Citation Lin, Ruei-Lung; Gu, Qihai; Khosravi, Mehdi; and Lee, Lu-Yuan, "Sustained Sensitizing Effects of Tumor Necrosis Factor Alpha on Sensory Nerves in Lung and Airways" (2017). Physiology Faculty Publications. 139. https://uknowledge.uky.edu/physiology_facpub/139 This Article is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Physiology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Sustained Sensitizing Effects of Tumor Necrosis Factor Alpha on Sensory Nerves in Lung and Airways Notes/Citation Information Published in Pulmonary Pharmacology & Therapeutics, v. 47, p. 29-37. © 2017 Elsevier Ltd. All rights reserved. This manuscript version is made available under the CC‐BY‐NC‐ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. The document available for download is the author's post-peer-review final draft of the ra ticle. Digital Object Identifier (DOI) https://doi.org/10.1016/j.pupt.2017.06.001 This article is available at UKnowledge: https://uknowledge.uky.edu/physiology_facpub/139 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Pulm Pharmacol Manuscript Author Ther.
    [Show full text]
  • Deletion of Vax1 from Gonadotropin-Releasing Hormone (Gnrh) Neurons Abolishes Gnrh Expression and Leads to Hypogonadism and Infertility
    3506 • The Journal of Neuroscience, March 23, 2016 • 36(12):3506–3518 Cellular/Molecular Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility Hanne M. Hoffmann,1 Crystal Trang,1 Ping Gong,1 Ikuo Kimura,2 Erica C. Pandolfi,1 and XPamela L. Mellon1 1Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, and 2Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Japan Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regu- lates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development, Vax1flox mice were generated and lineage tracing performed in Vax1flox/flox:GnRHcre:RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1. The absence of GnRH staining in adult Vax1flox/flox:GnRHcre mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7.
    [Show full text]
  • Loss-Of-Function Mutation in the Prokineticin 2 Gene Causes
    Loss-of-function mutation in the prokineticin 2 gene SEE COMMENTARY causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism Nelly Pitteloud*†, Chengkang Zhang‡, Duarte Pignatelli§, Jia-Da Li‡, Taneli Raivio*, Lindsay W. Cole*, Lacey Plummer*, Elka E. Jacobson-Dickman*, Pamela L. Mellon¶, Qun-Yong Zhou‡, and William F. Crowley, Jr.* *Reproductive Endocrine Unit, Department of Medicine and Harvard Reproductive Endocrine Science Centers, Massachusetts General Hospital, Boston, MA 02114; ‡Department of Pharmacology, University of California, Irvine, CA 92697; §Department of Endocrinology, Laboratory of Cellular and Molecular Biology, Institute of Molecular Pathology and Immunology, University of Porto, San Joa˜o Hospital, 4200-465 Porto, Portugal; and ¶Departments of Reproductive Medicine and Neurosciences, University of California at San Diego, La Jolla, CA 92093 Communicated by Patricia K. Donahoe, Massachusetts General Hospital, Boston, MA, August 14, 2007 (received for review May 8, 2007) Gonadotropin-releasing hormone (GnRH) deficiency in the human associated with KS, although no functional data on the mutant presents either as normosmic idiopathic hypogonadotropic hypo- proteins were provided (17). Herein, we demonstrate that homozy- gonadism (nIHH) or with anosmia [Kallmann syndrome (KS)]. To gous loss-of-function mutations in the PROK2 gene cause IHH in date, several loci have been identified to cause these disorders, but mice and humans. only 30% of cases exhibit mutations in known genes. Recently, murine studies have demonstrated a critical role of the prokineticin Results pathway in olfactory bulb morphogenesis and GnRH secretion. Molecular Analysis of PROK2 Gene. A homozygous single base pair Therefore, we hypothesize that mutations in prokineticin 2 deletion in exon 2 of the PROK2 gene (c.[163delA]ϩ [163delA]) (PROK2) underlie some cases of KS in humans and that animals was identified in the proband, in his brother with KS, and in his deficient in Prok2 would be hypogonadotropic.
    [Show full text]
  • Migraine: Current Concepts and Emerging Therapies
    Vascular Pharmacology 43 (2005) 176 – 187 www.elsevier.com/locate/vph Migraine: Current concepts and emerging therapies D.K. Arulmozhi a,b,*, A. Veeranjaneyulu a, S.L. Bodhankar b aNew Chemical Entity Research, Lupin Research Park, Village Nande, Taluk Mulshi, Pune 411 042, Maharashtra, India bDepartment of Pharmacology, Bharati Vidyapeeth, Poona College of Pharmacy, Pune 411 038, Maharashtra, India Received 23 April 2005; received in revised form 17 June 2005; accepted 11 July 2005 Abstract Migraine is a recurrent incapacitating neurovascular disorder characterized by attacks of debilitating pain associated with photophobia, phonophobia, nausea and vomiting. Migraine affects a substantial fraction of world population and is a major cause of disability in the work place. Though the pathophysiology of migraine is still unclear three major theories proposed with regard to the mechanisms of migraine are vascular (due to cerebral vasodilatation), neurological (abnormal neurological firing which causes the spreading depression and migraine) and neurogenic dural inflammation (release of inflammatory neuropeptides). The modern understanding of the pathogenesis of migraine is based on the concept that it is a neurovascular disorder. The drugs used in the treatment of migraine either abolish the acute migraine headache or aim its prevention. The last decade has witnessed the advent of Sumatriptan and the Ftriptan_ class of 5-HT1B/1D receptor agonists which have well established efficacy in treating migraine. Currently prophylactic treatments for migraine include calcium channel blockers, 5-HT2 receptor antagonists, beta adrenoceptor blockers and g-amino butyric acid (GABA) agonists. Unfortunately, many of these treatments are non specific and not always effective. Despite such progress, in view of the complexity of the etiology of migraine, it still remains undiagnosed and available therapies are underused.
    [Show full text]
  • Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice
    Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Xiao, Ling, Chengkang Zhang, Xiaohan Li, Shiaoching Gong, Renming Hu, Ravikumar Balasubramanian, William F. Crowley W. Jr., Michael H. Hastings, and Qun-Yong Zhou. 2014. “Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice.” PLoS ONE 9 (3): e90860. doi:10.1371/journal.pone.0090860. http:// dx.doi.org/10.1371/journal.pone.0090860. Published Version doi:10.1371/journal.pone.0090860 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12064464 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Signaling Role of Prokineticin 2 on the Estrous Cycle of Female Mice Ling Xiao1,2, Chengkang Zhang1, Xiaohan Li1, Shiaoching Gong3, Renming Hu4, Ravikumar Balasubramanian5, William F. Crowley W. Jr.5, Michael H. Hastings6, Qun-Yong Zhou1* 1 Department of Pharmacology, University of California, Irvine, California, United States of America, 2 Department of Endocrinology, Jinshan Hospital affiliated to Fudan University, Shanghai, China, 3 GENSAT Project, The Rockefeller University, New York, New York, United States of America, 4 Institute of Endocrinology and Diabetology, Huashan Hospital affiliated to Fudan University, Shanghai, China, 5 Harvard Reproductive Endocrine Sciences Center & The Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 6 Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom Abstract The possible signaling role of prokineticin 2 (PK2) and its receptor, prokineticin receptor 2 (PKR2), on female reproduction was investigated.
    [Show full text]
  • Orphan G Protein-Coupled Receptors and Obesity
    European Journal of Pharmacology 500 (2004) 243–253 www.elsevier.com/locate/ejphar Review Orphan G protein-coupled receptors and obesity Yan-Ling Xua, Valerie R. Jacksonb, Olivier Civellia,b,* aDepartment of Pharmacology, University of California Irvine, 101 Theory Dr., Suite 200, Irvine, CA 92612, USA bDepartment of Developmental and Cell Biology, University of California Irvine, 101 Theory Dr, Irvine, CA 92612, USA Accepted 1 July 2004 Available online 19 August 2004 Abstract The use of orphan G protein-coupled receptors (GPCRs) as targets to identify new transmitters has led over the last decade to the discovery of 12 novel neuropeptide families. Each one of these new neuropeptides has opened its own field of research, has brought new insights in distinct pathophysiological conditions and has offered new potentials for therapeutic applications. Interestingly, several of these novel peptides have seen their roles converge on one physiological response: the regulation of food intake and energy expenditure. In this manuscript, we discuss four deorphanized GPCR systems, the ghrelin, orexins/hypocretins, melanin-concentrating hormone (MCH) and neuropeptide B/neuropeptide W (NPB/NPW) systems, and review our knowledge of their role in the regulation of energy balance and of their potential use in therapies directed at feeding disorders. D 2004 Elsevier B.V. All rights reserved. Keywords: Feeding; Ghrelin; Orexin/hypocretin; Melanin-concentrating hormone; Neuropeptide B; Neuropeptide W Contents 1. Introduction............................................................ 244 2. Searching for the natural ligands of orphan GPCRs ....................................... 244 2.1. Reverse pharmacology .................................................. 244 2.2. Orphan receptor strategy ................................................. 244 3. Orphan receptors and obesity................................................... 245 3.1. The ghrelin system .................................................... 245 3.2.
    [Show full text]
  • Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons Manouela Valtcheva Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons Manouela Valtcheva Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Neuroscience and Neurobiology Commons Recommended Citation Valtcheva, Manouela, "Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons" (2018). Arts & Sciences Electronic Theses and Dissertations. 1596. https://openscholarship.wustl.edu/art_sci_etds/1596 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Neurosciences Dissertation Examination Committee: Robert W. Gereau, IV, Chair Yu-Qing Cao Sanjay Jain Qin Liu Durga Mohapatra Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons by Manouela Vesselinova Valtcheva A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2018 St. Louis, Missouri © 2018, Manouela V. Valtcheva Table
    [Show full text]
  • Angiocrine Endothelium: from Physiology to Cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3
    Pasquier et al. J Transl Med (2020) 18:52 https://doi.org/10.1186/s12967-020-02244-9 Journal of Translational Medicine REVIEW Open Access Angiocrine endothelium: from physiology to cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3 Abstract The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The sig- nifcance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogen- esis that is critical for tumor initiation and growth. Nevertheless, the identifcation of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profling studies have demonstrated distinctive expression patterns in tumor- associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identifed which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies. Keywords: Angiocrine, Endothelium, Cancer, Cancer microenvironment, Angiogenesis Introduction of blood vessels in initiation of tumor growth and stated Metastatic disease accounts for about 90% of patient that in the absence of such angiogenesis, tumors can- mortality. Te difculty in controlling and eradicating not expand their mass or display a metastatic phenotype metastasis might be related to the heterotypic interaction [7]. Based on this theory, many investigators assumed of tumor and its microenvironment [1].
    [Show full text]
  • (PROK2) in Alzheimer's Disease
    cells Communication Involvement of the Chemokine Prokineticin-2 (PROK2) in Alzheimer’s Disease: From Animal Models to the Human Pathology Roberta Lattanzi 1, Daniela Maftei 1, Carla Petrella 2, Massimo Pieri 3, Giulia Sancesario 4, Tommaso Schirinzi 5, Sergio Bernardini 3, Christian Barbato 2 , Massimo Ralli 6 , Antonio Greco 6, Roberta Possenti 5, Giuseppe Sancesario 5 and Cinzia Severini 2,* 1 Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P.za A. Moro 5, 00185 Rome, Italy; [email protected] (R.L.); [email protected] (D.M.) 2 Institute of Biochemistry and Cell Biology, IBBC, CNR, Viale del Policlinico, 155, 00161 Rome, Italy; [email protected] (C.P.); [email protected] (C.B.) 3 Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (M.P.); [email protected] (S.B.) 4 Neuroimmunology Unit, IRCCS Santa Lucia Foundation, v. Ardeatina 354, 00179 Rome, Italy; [email protected] 5 Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (T.S.); [email protected] (R.P.); [email protected] (G.S.) 6 Department of Sense Organs, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy; [email protected] (M.R.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +39-06-4997-6742 Received: 17 October 2019; Accepted: 12 November 2019; Published: 13 November 2019 Abstract: Among mediators of inflammation, chemokines play a pivotal role in the neuroinflammatory process related to Alzheimer’s disease (AD).
    [Show full text]