Artemin-Stimulated Progression of Human Non–Small Cell Lung Carcinoma Is Mediated by BCL2

Total Page:16

File Type:pdf, Size:1020Kb

Artemin-Stimulated Progression of Human Non–Small Cell Lung Carcinoma Is Mediated by BCL2 Published OnlineFirst June 8, 2010; DOI: 10.1158/1535-7163.MCT-09-1077 Research Article Molecular Cancer Therapeutics Artemin-Stimulated Progression of Human Non–Small Cell Lung Carcinoma Is Mediated by BCL2 Jian-Zhong Tang1, Xiang-Jun Kong3, Jian Kang1, Graeme C. Fielder1, Michael Steiner1, Jo K. Perry1, Zheng-Sheng Wu4, Zhinan Yin5, Tao Zhu3, Dong-Xu Liu1, and Peter E. Lobie1,2 Abstract We herein show that Artemin (ARTN), one of the glial cell line–derived neurotrophic factor family of li- gands, promotes progression of human non–small cell lung carcinoma (NSCLC). Oncomine data indicate that expression of components of the ARTN signaling pathway (ARTN, GFRA3, and RET) is increased in neoplas- tic compared with normal lung tissues; increased expression of ARTN in NSCLC also predicted metastasis to lymph nodes and a higher grade in certain NSCLC subtypes. Forced expression of ARTN stimulated survival, anchorage-independent, and three-dimensional Matrigel growth of NSCLC cell lines. ARTN increased BCL2 expression by transcriptional upregulation, and inhibition of BCL2 abrogated the oncogenic properties of ARTN in NSCLC cells. Forced expression of ARTN also enhanced migration and invasion of NSCLC cells. Forced expression of ARTN in H1299 cells additionally resulted in larger xenograft tumors, which were high- ly proliferative, invasive, and metastatic. Concordantly, either small interfering RNA–mediated depletion or functional inhibition of endogenous ARTN with antibodies reduced oncogenicity and invasiveness of NSCLC cells. ARTN therefore mediates progression of NSCLC and may be a potential therapeutic target for NSCLC. Mol Cancer Ther; 9(6); 1697–708. ©2010 AACR. Introduction Therefore, identification and subsequent targeting of novel oncogenic pathways may provide an advantage to Lung carcinoma is currently responsible for the highest the current regimens used to treat lung carcinoma and cancer-related mortality worldwide, with overall 5-year consequently improve prognosis. survival approximating 15% (1, 2). Primary lung carcino- Artemin (ARTN) is a neurotrophic factor that be- ma can be largely classified as non–small cell lung carci- longs to the glial cell line–derived neurotrophic factor noma (NSCLC) and SCLC (1). Although early diagnosis (GDNF) family of ligands (GFL). ARTN mediates sur- of lung carcinoma remains challenging, the lack of effec- vival, differentiation, and migration of various types of tive approaches to prevent disease progression also per- neurons (7, 8). ARTN signaling is reported to be trans- sists. As a result of advances in cancer biology during the duced via cognate receptors GFRA3 and also GFRA1 last few decades, a number of targeted agents have been (9), which stimulate the phosphorylation of the trans- developed, exemplified by erlotinib/gefitinib, which se- membrane receptor tyrosine kinase RET, to activate lectively inhibits the epidermal growth factor receptor downstream mitogen-activated protein kinase and (3). However, clinical application of these agents has phosphatidylinositol 3-kinase pathways, among others provided only limited therapeutic benefits for patients (10). RET-independent signaling has also been observed with lung carcinoma (4–6), partially attributable to the for the GFL family via alternative partners, including compensatory effect of other cellular mechanisms integrins and neural cell adhesion molecule (10). exploited by the tumors for survival and progression (3). An increasing body of evidence has implicated ARTN in progression of carcinoma (8, 11–13). Elevated expres- sion of ARTN predicted residual disease after chemo- Authors' Affiliations: 1Liggins Institute and 2Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, therapy, metastasis, and decreased overall survival in University of Auckland, Auckland, New Zealand; 3Hefei National mammary carcinoma patients (8). ARTN expression is Laboratory for Physical Sciences at Microscale and School of Life also positively correlated to high tumor grade and myo- Sciences, University of Science and Technology of China; 4Department of Pathology, Anhui Medical University, Hefei, Anhui, P.R. China; and metrial invasion in endometrial carcinoma (12). Forced 5School of Life Sciences, Nankai University, Tianjin, P.R. China expression of ARTN promoted survival, invasion, an- Note: Supplementary material for this article is available at Molecular chorage-independent growth, and xenograft tumor Cancer Therapeutics Online (http://mct.aacrjournals.org/). growth of both human mammary and endometrial carci- Corresponding Author: Peter E. Lobie, Liggins Institute, University of noma cells, whereas depletion or functional inhibition of Auckland, Private Bag 92019, Auckland 1023, New Zealand. Phone: ARTN inhibited these cellular activities (8, 12). ARTN 64-9-9232125; Fax: 64-9-3737497. E-mail: [email protected] and GDNF have also been reported to stimulate invasive- doi: 10.1158/1535-7163.MCT-09-1077 ness but not proliferation of human pancreatic carcinoma ©2010 American Association for Cancer Research. cells (11, 14). www.aacrjournals.org 1697 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst June 8, 2010; DOI: 10.1158/1535-7163.MCT-09-1077 Tang et al. Herein, we show that ARTN promotes progression of (17, 18). Suspension culture and soft agar colony formation NSCLC by enhancement of tumor growth and metastasis. assays were done in 10% fetal bovine serum (FBS) medi- We therefore propose that strategies targeting ARTN could um. For total cell number assay, H1299 derivatives were potentially exert therapeutic benefit in human NSCLC. seeded at 3 × 103 cells per well in 10% FBS medium and 2.5 × 104 cells per well in 0.2% FBS medium. For total cell Materials and Methods number and suspension culture assays, cells were collect- ed after trypsinization for manual counting. For wound- Plasmid constructs healing assays, wounds were created in a 90% confluent pIRESneo3 empty vector, pIRESneo3-ARTN expres- cell monolayer using an inverted sterile 200 μL pipette sion plasmid, negative control small interfering RNA tip in a continuous linear motion. The wounded cell mono- (siRNA) construct pSilencer-CONTROL (previously layer was maintained in growth medium until the wounds designated as pSilencer-CK), and ARTN-specific siRNA in one of two compared groups were closed. The position construct pSilencer-ARTN were described previously (8). of two frontlines of the cells migrating into the wounds was photographed at six to nine fixed locations on each Cell lines and cell transfection day.Forgrowthinthree-dimensionalMatrigel,1×103 The human NSCLC cell lines H1299, H2009, and A549 cells were plated in 10% FBS medium supplemented with were obtained from and characterized by the American 2% Matrigel in a 96-well plate. Matrigel-containing (2%) Type Culture Collection. Human NSCLC cell lines H1975 medium was renewed every 3 days until the experiment and H460 were generously provided by Professor William was terminated after 8 days. Cell number was quantified Wilson (University of Auckland). H1299 and H1975 were by Alamar blue as previously described (Invitrogen; ref. transfected using FuGENE HD Transfection Reagent 19). Transwell migration and invasion assays were done (Roche Diagnostics) with pIRESneo3 or pIRESneo3-ARTN, as previously described with minor modifications (12). respectively. Following 4-week selection in media contain- Twenty-four–well inserts (8-μm pore size; BD Biosciences) 2 ing 1200 μg/mL G418, pooled stable transfectants were des- were coated with 2.5 μg/cm poly-D-lysine for both as- ignated as H1299-VEC, H1299-ARTN, H1975-VEC, and says. For invasion assays, inserts were subsequently coat- H1975-ARTN, respectively. H1299 or H1975 cells were also ed with Matrigel (BD Biosciences), diluted 1:40 with transfected with pSilencer-CONTROL or pSilencer-ARTN, serum-free medium. Cells (2 × 104) were plated in se- respectively, generating stable cell lines H1299-CONTROL, rum-free medium on the upper side of each insert and al- H1299-siARTN, H1975-CONTROL, or H1975-siARTN. lowed to migrate toward 10% FBS medium on the lower side. Migration assays were done for 9 hours for H1299 de- Generation of chicken anti-ARTN antibody rivatives or 16 hours for H1975 derivatives. Invasion as- Chicken anti-ARTN polyclonal antibody (ARTN-IgY) says were done for 16 hours for H1299 derivatives or for was generated as previously described (8). ARTN-IgY 24 hours for H1975 derivatives. Cells on the lower side of and preimmune chicken IgY (CON-IgY) were both used inserts were fixed in ice-cold methanol, stained with 0.01% at 500 μg/mL for cell-based bioassays. crystal violet, and counted. Phase-contrast micrographs were acquired with an Olympus DP70 digital camera BCL2 inhibitor attached to Olympus IX71 fluorescence microscope and The BCL2 inhibitor YC137 (Calbiochem) was purchased analyzed with DPController v1.1 and DPManager v1.1 from Merck KGaA. The specificity of YC137 for BCL2 has (Olympus America, Inc.). previously been shown elsewhere (15). Cell cycle analysis Western blot analysis Following serum depletion (0.2% FBS; 24 h for H1975 or Western blot analysis was done as previously described 48 h for H1299), cells were harvested immediately or fur- (8, 16). Four milliliters of conditioned medium were gen- ther cultured in 10% FBS medium for 24 or 48 hours before erated from 106 cells incubated in serum-free medium for harvest. Samples were assessed
Recommended publications
  • The GDNF Family: a Role in Cancer? Graeme C
    Volume 20 Number 1 January 2018 pp. 99–117 99 www.neoplasia.com The GDNF Family: A Role in Cancer? Graeme C. Fielder*, 1, 2, Teresa Wen-Shan Yang*, 1, Mahalakshmi Razdan†, Yan Li†, Jun Lu†, Jo K. Perry‡, Peter E. Lobie§ and Dong-Xu Liu† *University of Auckland, Auckland, New Zealand; †The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; ‡Liggins Institute, University of Auckland, Auckland, New Zealand; §Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China Abstract The glial cell line–derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non–hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention. Neoplasia (2018) 20, 99–117 Introduction GFL Signaling The glial cell line–derived neurotrophic factor (GDNF) family of Each member of the GDNF family is expressed as a pre-pro-precursor ligands (GFLs) is comprised of four structurally related factors: protein, which is proteolytically cleaved at a putative furin-like GDNF,neurturin(NRTN),artemin(ARTN),andpersephin cleavage site (RAAR) by yet unidentified enzymes to generate an (PSPN) [1–3].
    [Show full text]
  • Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons Manouela Valtcheva Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons Manouela Valtcheva Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Neuroscience and Neurobiology Commons Recommended Citation Valtcheva, Manouela, "Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons" (2018). Arts & Sciences Electronic Theses and Dissertations. 1596. https://openscholarship.wustl.edu/art_sci_etds/1596 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Neurosciences Dissertation Examination Committee: Robert W. Gereau, IV, Chair Yu-Qing Cao Sanjay Jain Qin Liu Durga Mohapatra Molecular Mediators of Acute and Chronic Itch in Mouse and Human Sensory Neurons by Manouela Vesselinova Valtcheva A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2018 St. Louis, Missouri © 2018, Manouela V. Valtcheva Table
    [Show full text]
  • Angiocrine Endothelium: from Physiology to Cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3
    Pasquier et al. J Transl Med (2020) 18:52 https://doi.org/10.1186/s12967-020-02244-9 Journal of Translational Medicine REVIEW Open Access Angiocrine endothelium: from physiology to cancer Jennifer Pasquier1,2*, Pegah Ghiabi2, Lotf Chouchane3,4,5, Kais Razzouk1, Shahin Rafi3 and Arash Rafi1,2,3 Abstract The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The sig- nifcance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogen- esis that is critical for tumor initiation and growth. Nevertheless, the identifcation of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profling studies have demonstrated distinctive expression patterns in tumor- associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identifed which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies. Keywords: Angiocrine, Endothelium, Cancer, Cancer microenvironment, Angiogenesis Introduction of blood vessels in initiation of tumor growth and stated Metastatic disease accounts for about 90% of patient that in the absence of such angiogenesis, tumors can- mortality. Te difculty in controlling and eradicating not expand their mass or display a metastatic phenotype metastasis might be related to the heterotypic interaction [7]. Based on this theory, many investigators assumed of tumor and its microenvironment [1].
    [Show full text]
  • Artemin, a Novel Member of the GDNF Ligand Family, Supports Peripheral and Central Neurons and Signals Through the GFR␣3–RET Receptor Complex
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Neuron, Vol. 21, 1291±1302, December, 1998, Copyright 1998 by Cell Press Artemin, a Novel Member of the GDNF Ligand Family, Supports Peripheral and Central Neurons and Signals through the GFRa3±RET Receptor Complex Robert H. Baloh,* Malu G. Tansey,² et al., 1998; Milbrandt et al., 1998; reviewed by Grondin Patricia A. Lampe,² Timothy J. Fahrner,* and Gash, 1998). However, the GDNF ligands also influ- Hideki Enomoto,* Kelli S. Simburger,* ence a broad spectrum of other neuronal populations Melanie L. Leitner,² Toshiyuki Araki,* in both the CNS and PNS. GDNF and NTN both support Eugene M. Johnson, Jr.,² the survival of many peripheral neurons in culture, in- and Jeffrey Milbrandt*³ cluding sympathetic, parasympathetic, sensory, and en- *Department of Pathology and teric neurons (Buj-Bello et al., 1995; Ebendal et al., 1995; Department of Internal Medicine Trupp et al., 1995; Kotzbauer et al., 1996; Heuckeroth ² Department of Neurology and et al., 1998). In contrast, PSP does not share any of Department of Molecular Biology these peripheral activities but does support the survival and Pharmacology of dopaminergic midbrain neurons and motor neurons Washington University (Milbrandt et al., 1998). Despite the fact that GDNF acts School of Medicine on many cell populations in vitro, analysis of GDNF St. Louis, Missouri 63110 knockout mice revealed that the major developmental importance of GDNF is in the enteric nervous system and in kidney organogenesis, both of which are lost in Summary GDNF null mice (Moore et al., 1996; Pichel et al., 1996; Sanchez et al., 1996).
    [Show full text]
  • GDNF Family Ligands and DRG Sensory Neurons 4337
    Development 127, 4335-4344 (2000) 4335 Printed in Great Britain © The Company of Biologists Limited 2000 DEV1547 Positive and negative interactions of GDNF, NTN and ART in developing sensory neuron subpopulations, and their collaboration with neurotrophins Christel Baudet1, Åsa Mikaels1, Heiner Westphal2, Jens Johansen3, Teit E. Johansen3 and Patrik Ernfors1,* 1Laboratory of Molecular Neurobiology, Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden 2Laboratory of Mammalian Genes and Development, National Institute of Health, Bethesda, MD 20892, USA 3NsGene A/S, DK-2570 Ballerup, Denmark *Author for correspondence (e-mail: [email protected]) Accepted 25 July; published on WWW 26 September 2000 SUMMARY Glial cell line-derived neurotrophic factor (GDNF), family receptors are medium sized, whereas small-caliber neurturin (NTN) and neublastin/artemin (ART) are distant nociceptive cells preferentially express a single receptor. In members of the transforming growth factor β family, contrast to brain-derived neurotrophic factor (BDNF)- and have been shown to elicit neurotrophic effects upon dependent neurons, embryonic nerve growth factor (NGF)- several classes of peripheral and central neurons. Limited dependent nociceptive neurons switch dependency to information from in vitro and expression studies has GDNF, NTN and ART postnatally. Neurons that survive in also substantiated a role for GDNF family ligands in the presence of neurotrophin 3 (NT3) or neurotrophin 4 mammalian somatosensory neuron development. Here, we (NT4), including proprioceptive afferents, Merkel end show that although dorsal root ganglion (DRG) sensory organs and D-hair afferents, are also supported by GDNF neurons express GDNF family receptors embryonically, family ligands neonatally, although at postnatal stages they they do not survive in response to their ligands.
    [Show full text]
  • Intravitreal Co-Administration of GDNF and CNTF Confers Synergistic and Long-Lasting Protection Against Injury-Induced Cell Death of Retinal † Ganglion Cells in Mice
    cells Article Intravitreal Co-Administration of GDNF and CNTF Confers Synergistic and Long-Lasting Protection against Injury-Induced Cell Death of Retinal y Ganglion Cells in Mice 1, 1, 1 2 2 Simon Dulz z , Mahmoud Bassal z, Kai Flachsbarth , Kristoffer Riecken , Boris Fehse , Stefanie Schlichting 1, Susanne Bartsch 1 and Udo Bartsch 1,* 1 Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (S.D.); [email protected] (M.B.); kaifl[email protected] (K.F.); [email protected] (S.S.); [email protected] (S.B.) 2 Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (K.R.); [email protected] (B.F.) * Correspondence: [email protected]; Tel.: +49-40-7410-55945 A first draft of this manuscript is part of the unpublished doctoral thesis of Mahmoud Bassal. y Shared first authorship. z Received: 9 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: We have recently demonstrated that neural stem cell-based intravitreal co-administration of glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) confers profound protection to injured retinal ganglion cells (RGCs) in a mouse optic nerve crush model, resulting in the survival of ~38% RGCs two months after the nerve lesion. Here, we analyzed whether this neuroprotective effect is long-lasting and studied the impact of the pronounced RGC rescue on axonal regeneration. To this aim, we co-injected a GDNF- and a CNTF-overexpressing neural stem cell line into the vitreous cavity of adult mice one day after an optic nerve crush and determined the number of surviving RGCs 4, 6 and 8 months after the lesion.
    [Show full text]
  • Effects of PACAP on Schwann Cells
    International Journal of Molecular Sciences Review Effects of PACAP on Schwann Cells: Focus on Nerve Injury 1, 2, 1 3 Grazia Maugeri y, Agata Grazia D’Amico y, Giuseppe Musumeci , Dora Reglodi and Velia D’Agata 1,* 1 Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; [email protected] (G.M.); [email protected] (G.M.) 2 Department of Drug Sciences, University of Catania, 95100 Catania, Italy; [email protected] 3 Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Szigeti út 12, H-7624 Pécs, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +39-095-3782039 These authors contributed equally to this work. y Received: 29 September 2020; Accepted: 2 November 2020; Published: 3 November 2020 Abstract: Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
    [Show full text]
  • Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: from Biology to Therapy
    International Journal of Molecular Sciences Review Current and Future Role of Tyrosine Kinases Inhibition in Thyroid Cancer: From Biology to Therapy 1, 1, 1,2,3, 3,4 María San Román Gil y, Javier Pozas y, Javier Molina-Cerrillo * , Joaquín Gómez , Héctor Pian 3,5, Miguel Pozas 1, Alfredo Carrato 1,2,3 , Enrique Grande 6 and Teresa Alonso-Gordoa 1,2,3 1 Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; [email protected] (M.S.R.G.); [email protected] (J.P.); [email protected] (M.P.); [email protected] (A.C.); [email protected] (T.A.-G.) 2 The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain 3 Medicine School, Alcalá University, 28805 Madrid, Spain; [email protected] (J.G.); [email protected] (H.P.) 4 General Surgery Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain 5 Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain 6 Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain; [email protected] * Correspondence: [email protected] These authors have contributed equally to this work. y Received: 30 June 2020; Accepted: 10 July 2020; Published: 13 July 2020 Abstract: Thyroid cancer represents a heterogenous disease whose incidence has increased in the last decades. Although three main different subtypes have been described, molecular characterization is progressively being included in the diagnostic and therapeutic algorithm of these patients. In fact, thyroid cancer is a landmark in the oncological approach to solid tumors as it harbors key genetic alterations driving tumor progression that have been demonstrated to be potential actionable targets.
    [Show full text]
  • Regulation of GDNF Expression in Sertoli Cells
    157 3 REPRODUCTIONREVIEW Regulation of GDNF expression in Sertoli cells Parag A Parekh1, Thomas X Garcia2,3 and Marie-Claude Hofmann1 1Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA, 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA, 3Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA Correspondence should be addressed to M-C Hofmann; Email: [email protected] Abstract Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self- renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis. Reproduction (2019) 157 R95–R107 Introduction reserve stem cells (A0), coexisting with a population of renewing spermatogonia that they called A1–A4 Proper regulation of stem cell fate is critical to maintain (Clermont & Leblond 1953, Clermont & Bustos-Obregon adequate cell numbers in health and diseases.
    [Show full text]
  • Neuronal Types and Their Specification Dynamics in the Autonomic Nervous System
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM Alessandro Furlan Stockholm 2016 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB © Alessandro Furlan, 2016 ISBN 978-91-7676-419-0 On the cover: abstract illustration of sympathetic neurons extending their axons Credits: Gioele La Manno NEURONAL TYPES AND THEIR SPECIFICATION DYNAMICS IN THE AUTONOMIC NERVOUS SYSTEM THESIS FOR DOCTORAL DEGREE (Ph.D.) By Alessandro Furlan Principal Supervisor: Opponent: Prof. Patrik Ernfors Prof. Hermann Rohrer Karolinska Institutet Max Planck Institute for Brain Research Department of Medical Biochemistry and Research Group Developmental Neurobiology Biophysics Division of Molecular Neurobiology Examination Board: Prof. Jonas Muhr Co-supervisor(s): Karolinska Institutet Prof. Ola Hermansson Department of Cell and Molecular Biology Karolinska Institutet Department of Neuroscience Prof. Tomas Hökfelt Karolinska Institutet Assistant Prof. Francois Lallemend Department of Neuroscience Karolinska Institutet Division of Chemical Neurotransmission Department of Neuroscience Prof. Ted Ebedal Uppsala University Department of Neuroscience Division of Developmental Neuroscience To my parents ABSTRACT The autonomic nervous system is formed by a sympathetic and a parasympathetic division that have complementary roles in the maintenance of body homeostasis. Autonomic neurons, also known as visceral motor neurons, are tonically active and innervate virtually every organ in our body. For instance, cardiac outflow, thermoregulation and even the focusing of our eyes are just some of the plethora of physiological functions under the control of this system. Consequently, perturbation of autonomic nervous system activity can lead to a broad spectrum of disorders collectively known as dysautonomia and other diseases such as hypertension.
    [Show full text]
  • Neurotrophins and Their Receptors: a Convergence Point for Many Signalling Pathways
    REVIEWS NEUROTROPHINS AND THEIR RECEPTORS: A CONVERGENCE POINT FOR MANY SIGNALLING PATHWAYS Moses V.Chao The neurotrophins are a family of proteins that are essential for the development of the vertebrate nervous system. Each neurotrophin can signal through two different types of cell surface receptor — the Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Given the wide range of activities that are now associated with neurotrophins, it is probable that additional regulatory events and signalling systems are involved. Here, I review recent findings that neurotrophins, in addition to promoting survival and differentiation, exert various effects through surprising interactions with other receptors and ion channels. 5,6 LONG-TERM POTENTIATION The era of growth factor research began fifty years ago receptor . Despite considerable progress in understand- (LTP).An enduring increase in with the discovery of nerve growth factor (NGF). Since ing the roles of these receptors, additional mechanisms the amplitude of excitatory then, the momentum to study the NGF — or neu- are needed to explain the many cellular and synaptic postsynaptic potentials as a rotrophin — family has never abated because of their interactions that occur between neurons. An emerging result of high-frequency (tetanic) stimulation of afferent continuous capacity to provide new insights into neural view is that neurotrophin receptors act as sensors for var- pathways. It is measured both as function; the influence of neurotrophins spans from ious extracellular and intracellular inputs, and several the amplitude of excitatory developmental neurobiology to neurodegenerative and new mechanisms have recently been put forward. Here, I postsynaptic potentials and as psychiatric disorders. In addition to their classic effects will consider several ways in which Trk and p75 receptors the magnitude of the postsynaptic-cell population on neuronal cell survival, neurotrophins can also regu- might account for the unique effects of neurotrophins spike.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
    GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756
    [Show full text]