WO 2017/095848 Al 8 June 2017 (08.06.2017) W P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/095848 Al 8 June 2017 (08.06.2017) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/095848 Al 8 June 2017 (08.06.2017) W P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 47/42 (2017.01) A61K 39/395 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 39/00 (2006.01) A61K 47/00 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US20 16/064080 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (22) International Filing Date: TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 30 November 2016 (30.1 1.2016) zw. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/260,677 30 November 2015 (30. 11.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: MEDIMMUNE, LLC [US/US]; One Medim- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, mune Way, Gaithersburg, MD 20878 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (72) Inventors: PATEL, Sajal, M.; c/o Medimmune, LLC, One Medimmune Way, Gaithersburg, MD 20878 (US). Declarations under Rule 4.17 : PANSARE, Swapnil, K.; c/o Medimmune, LLC, One — as to applicant's entitlement to apply for and be granted a Medimmune Way, Gaithersburg, MD 20878 (US). patent (Rule 4.1 7(H)) (74) Agents: SCOTT, Derek et al; c/o Medimmune, LLC, One — as to the applicant's entitlement to claim the priority of the Medimmune Way, Gaithersburg, MD 20878 (US). earlier application (Rule 4.1 7(in)) (81) Designated States (unless otherwise indicated, for every Published: kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, — with international search report (Art. 21(3)) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (54) Title: OPTIMIZED RATIOS OF AMINO ACIDS AND SUGARS AS AMORPHOUS STABILIZING COMPOUNDS IN PHARMACEUTICAL COMPOSITIONS CONTAINING HIGH CONCENTRATIONS OF PROTEIN-BASED THERAPEUTIC AGENTS : 77 C - — , ,—, , , , ,— , -—, , , Temperatu re (¾) Figure 1 (57) Abstract: The present invention relates to improved pharmaceutical compositions that contain high concentrations of one or more protein biomolecule(s). In particular, the invention relates to pharmaceutical compositions that include an optimized ratio of protein biomolecule to an amorphous stabilizing compound or compounds, especially a sugar, such as sucrose, trehalose, glucose, lactose or sorbitol, or mixtures thereof, or one or more amino acid molecules such as arginine, alanine, glycine, lysine or proline, or derivatives and salts thereof, or mixtures thereof. The inclusion of such amorphous stabilizing compound(s), at such optimized ratio, provides acceptable long-term stability of the protein biomolecule, and facilitates shorter lyophilization time, more specifically short er drying time, even more specifically shorter primary drying time. Title Of The Invention: Optimized Ratios of Amino Acids and Sugars as Amorphous Stabilizing Compounds in Pharmaceutical Compositions Containing High Concentrations of Protein-Based Therapeutic Agents Field Of The Invention [0001] The present invention relates to improved pharmaceutical compositions that contain high concentrations of one or more protein biomolecule(s). In particular, the invention relates to pharmaceutical compositions that include an optimized ratio of protein biomolecule to an amorphous stabilizing compound or compounds, especially a sugar, such as sucrose, trehalose, glucose, lactose or sorbitol, or mixtures thereof, or one or more amino acid molecules such as arginine, alanine, glycine, lysine or proline, or derivatives and salts thereof, or mixtures thereof. The inclusion of such amorphous stabilizing compound(s), at such optimized ratio, provides acceptable long-term stability of the protein biomolecule, and facilitates shorter lyophilization time, more specifically shorter drying time, even more specifically shorter primary drying time. Background Of The Invention [0002] Protein-based therapeutic agents (e.g., hormones, enzymes, cytokines, vaccines, immunotherapeutics, etc.) are becoming increasingly important to the management and treatment of human disease. As of 2014, more than 60 such therapeutics had been approved for marketing, with approximately 140 additional drugs in clinical trial and more than 500 therapeutic peptides in various stages of preclinical development (Fosgerau, K. et al. (2014) "Peptide Therapeutics: Current Status And Future Directions,'" Drug Discov. Today 20(1):122-128; Kaspar, A.A. et al. (2013) "Future Directions For Peptide Therapeutics Development," Drug Discov. Today 18:807- 817). [0003] One impediment to the use of such therapeutics is the physical instability that is often encountered upon their storage (US Patent No. 8,617,576; PCT Publications No. WO 2014/100143 and 2015/061584; Balcao, V.M. et al. (2014) "Structural And Functional Stabilization Of Protein Entities: State-Of-The-Art Adv. Drug Deliv. Rev. (Epub.): doi: 10.1016/j.addr.2014.10.005; pp. 1-17; Maddux, N.R. et al. (2011) "Multidimensional Methods For The Formulation Of Biopharmaceuticals And Vaccines,'" J. Pharm. Sci. 100:4171-4197; Wang, W. (1999) "Instability, Stabilization, And Formulation Of Liquid Protein Pharmaceuticals " Int. J. Pharm. 185:129-188; Kristensen, D. et al. (2011) "Vaccine Stabilization: Research, Commercialization, And Potential Impact," Vaccine 29:7122-7124; Kumru, O.S. et al. (2014) "Vaccine Instability In The Cold Chain: Mechanisms, Analysis And Formulation Strategies," Biologicals 42:237-259). Such instability may comprise multiple aspects. A protein-based therapeutic agent may, for example experience operational instability, such as an impaired ability to survive processing operations {e.g., sterilization, lyophilization, cryopreservation, etc.). Additionally or alternatively, proteins may experience thermodynamic instability such that a desired secondary or tertiary conformation is lost or altered upon storage. A further, and especially complex problem, lies in the stabilization of therapeutic agents that comprise multimeric protein subunits, with dissociation of the subunits resulting in the inactivation of the product. Kinetic instability is a measure of the capacity of a protein to resist irreversible changes of structure in in vitro non-native conditions. Protein aggregation and the formation of inclusion bodies is considered to be the most common manifestation of instability, and is potentially encountered in multiple phases of product development (Wang, W . (2005) "Protein Aggregation And Its Inhibition In Biopharmaceutics," Int. J. Pharm. 289:1-30; Wang, W. (1999) "Instability, Stabilization, And Formulation Of Liquid Protein Pharmaceuticals," Int. J. Pharm. 185:129-188; Arakawa, T. et al. (1993) "Factors Affecting Short-Term And Long-Term Stabilities Of Proteins," Adv. Drug Deliv. Rev. 10:1-28; Arakawa, T. et al. (2001) "Factors Affecting Short-Term And Long-Term Stabilities Of Proteins," Adv. Drug Deliv. Rev. 46:307-326). Such issues of instability can affect not only the efficacy of the therapeutic but its immunogenicity to the recipient patient. Protein instability is thus one of the major drawbacks that hinders the use of protein-based therapeutic agent (Balcao, V.M. et al. (2014) "Structural And Functional Stabilization Of Protein Entities: State-Of-The-Art," Adv. Drug Deliv. Rev. (Epub.): doi: 10. 1016/j.addr.2014. 10.005; pp. 1-17). [0004] Stabilization of protein-based therapeutic agents entails preserving the structure and functionality of such agents, and has been accomplished by establishing a thermodynamic equilibrium between such agents and their (micro)environment (Balcao, V.M. et al. (2014) "Structural And Functional Stabilization Of Protein Entities: State-Of-The-Art," Adv. Drug Deliv. Rev. (Epub.): doi: 10. 1016/j.addr.2014. 10.005; pp. 1-17). One approach to stabilizing protein- based therapeutic agents involves altering the protein to contain additional covalent (e.g., disulfide) bonds so as to increase the enthalpy associated with a desired conformation. Alternatively, the protein may be modified to contain additional polar groups so as to increase its hydrogen bonding with solvating water molecules (Mozhaev, V.V. et al. (1990) "Structure-Stability Relationships In Proteins: A Guide To Approaches To Stabilizing Enzymes " Adv. Drug Deliv. Rev. 4:387-419; Iyer, P.V. et al. (2008) "Enzyme Stability And Stabilization — Aqueous And Non-Aqueous Environment " Process Biochem. 43:1019-1032). [0005] A second approach to stabilizing protein-based therapeutic agents involves reducing the chemical activity of the water present in the protein's microenvironment, for example by freezing the water, adding specific solutes, or lyophilizing the pharmaceutical composition (see, e.g., Castronuovo, G. (1991) "Proteins In Aqueous Solutions. Calorimetric Studies And Thermodynamic Characterization " Thermochim. Acta 193:363-390). [0006] Employed solutes range from small
Recommended publications
  • Does Novartis Need a Big Immuno- Oncology Deal?
    Sandoz’s Biosimilar Rejection Ups Key Clinical Data And Drug Expert View Risks, But Won’t Kill Market Approvals Expected New data on growth in China’s FDA’s rejection of Sandoz’s version of In 2H 2016 Scrip takes a look at some turbulent pharma sector paint a Amgen’s Neulasta has revealed the truth clinical trial read-outs and drug approvals mixed and complex picture, indicating that chasing the biosimilar market may expected, clinical trials due to report in both challenges and opportunities be riskier & more costly (p3) the second half of the year (p18) ahead (p20) 29 July 2016 No. 3813 Scripscripintelligence.com Pharma intelligence | informa space given what’s coming.” The company has previously stressed that its leadership position in chimeric antigen receptor T-cell therapy (CAR-Ts) will get it back in the thick of it. “I believe that we have a very strong self-generated, through in-licensing and through acquisition, early-stage immuno- oncology pipeline,” he said. And, he reiterat- ed the common refrain in the industry that success in the field will be determined over the long-term through the development of combinations. In May, Novartis announced a restructur- ing to break Novartis Oncology out into a separate business unit led by its own CEO, Bruno Strigini, who will report directly to Joseph Jimenez Jimenez. Merck & Co. Inc., Bristol and Roche have already launched the first immune check- point inhibitors, the PD-1/L1 inhibitors Key- Does Novartis Need A Big Immuno- truda (pembrolizumab), Opdivo (nivolumab) and Tecentriq (atezolizumab), respectively, while many others are in mid- to late-stage Oncology Deal? Jimenez Says No clinical development by drug makers like JESSICA MERRILL [email protected] AstraZeneca and Pfizer Inc.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Development of Red Blood Cell Autoantibodies Following Treatment with Checkpoint Inhibitors
    CASE R EP O RT Development of red blood cell autoantibodies following treatment with checkpoint inhibitors: a new class of anti-neoplastic, immunotherapeutic agents associated with immune dysregulation L.L.W. Cooling, J. Sherbeck, J.C. Mowers, and S.L. Hugan Ipilimumab, nivolumab, and pembrolizumab represent a new Table 1. Checkpoint inhibitors class of immunotherapeutic drugs for treating patients with Drug class (trade name, manufacturer) advanced cancer. Known as checkpoint inhibitors, these drugs act to upregulate the cellular and humoral immune response Anti-CTLA-4 to tumor antigens by inhibiting T-cell autoregulation. As a Ipilimumab (Yervoy, Bristol-Myers Squibb) consequence, they can be associated with immune-related adverse Tremelimumab (AstraZeneca, compassionate use only) events (irAEs) due to loss of self-tolerance, including rare cases of immune-related cytopenias. We performed a retrospective Anti-PD-1 clinical chart review, including serologic, hematology, and Nivolumab (Opdivo, Bristol-Myers Squibb) chemistry laboratory results, of two patients who developed Pembrolizumab (Keytruda, Merck Sharp & Dohme) red blood cell (RBC) autoantibodies during treatment with a Pidilizumab (Medivations, in clinical trials) checkpoint inhibitor. Serologic testing of blood samples from these patients during induction therapy with ipilimumab and Anti-PD-L1 nivolumab, respectively, showed their RBCs to be positive by Atezolizumab (Genentech, in clinical trials) the direct antiglobulin test (IgG+, C3+) and their plasma to Durvalumab (AstraZeneca, approved bladder cancer) contain panreactive RBC autoantibodies. Neither patient had evidence of hemolysis. Both patients developed an additional CTLA-4 = cytotoxic T-lymphocyte–associated antigen 4; PD-1 = programmed cell death protein 1; PD-L1 = programmed cell death ligand 1.
    [Show full text]
  • RT+IO Therapy in NSCLC Draft 4 Clinical Cancer Research 1
    Author Manuscript Published OnlineFirst on June 26, 2018; DOI: 10.1158/1078-0432.CCR-17-3620 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. RT+IO Therapy in NSCLC Draft 4 Clinical Cancer Research Title: The Integration of Radiotherapy With Immunotherapy for the Treatment of Non-Small Cell Lung Cancer Running title: Radiotherapy and Immunotherapy in Non-Small Cell Lung Cancer Eric C. Ko1, David Raben2, Silvia C. Formenti1 1Department of Radiation Oncology, Weill Cornell Medicine, New York, New York 2Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado Corresponding Author: Silvia C. Formenti, New York-Presbyterian/Weill Cornell Medicine, 525 East 68th Street, N-046, Box 169, New York, NY 10065-4885; Phone: 212-746-3608; Fax: 212-746-8850; E-mail: [email protected]. Confirmed Target Journal: Clinical Cancer Research Journal Specs (Review Article): Word Count (limit 3750 words): 4090 Abstract Word Count (unstructured, limit ≤250 words): 209 Number of References (≤75): 79 Number of Figures/Tables (5): 1 table, 3 figures 1 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 26, 2018; DOI: 10.1158/1078-0432.CCR-17-3620 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. RT+IO Therapy in NSCLC Draft 4 Clinical Cancer Research Abstract Five-year survival rates for non-small cell lung cancer (NSCLC) range from 14% to 49% for stage I to stage IIIA disease, and are <5% for stage IIIB/IV disease.
    [Show full text]
  • ESCMID Online Lecture Library @ by Author
    The diverse monoclonal antibodies in immunology and medical oncology: relevance for infectious diseases Dra. Isabel Ruiz Camps ESCMIDHospital Online Universitari Lecture Vall d’Hebron Library @ by authorBarcelona Disclosure • Astellas • Gilead Sciences • MSD • Novartis • Pfizer ESCMID Online Lecture Library @ by author A huge topic for such a ESCMIDshort Online time Lecture Library @ by author natalizumab antiTNF antiCD20: rituximab, obinutuzumab, ofatumumab gemtuzumab (antiCD33) alemtuzumab (antiCD52) daratumumab (antiCD38) Inotuzumab (antiCD22) Brentuximab (CD30) Seculinumab (anti IL-17) Tocilizumab (antiIL6) PI3K inhibitors PARP inh: olaparib, Guselkumab (anti IL12/23) rucaparib (copanlisib, more ... Roxulitinib, tofacitinib (JAK inh) Urelumab (CD137 R) Immunotherapy: ipilimumab TK inhibitors : Imatinib, dasatinib, Belimumab (antiBAFF) (CTLA-4), tremelimumab (CTLA-4), masitinib, bosutinib, nilotinib, fostamatinib nivolimumab (PD1/PDL1), (spleen), ibrutinib (BTK), alisertib (ATK), Pembrolizumab (PD1), more...... afatinib Cabozantinib: MET, RET, VEGFR2 HER2/neu:ESCMID trastuzumab, lapatinib Online VEGFR: bevacizumabLecture, LibrarymTOR: temsirolimus sorafenib, sunitinib EGFR: cetuximab, panitumumab, MAPK inh: dabrafenib, vemurafenib erlotinib, gefitinib Selinexor (XPO1 antagonist) @ by author Trametinib (MEK inh) Index • Background • Biological therapies for immunological diseases and risk of infection • Biological therapies for cancer – Target pathways – Risk of infection • Prevention ESCMID Online Lecture Library @ by author What are
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Timmerman Et Al-2020-Urelumab
    Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma John Timmerman, Charles Herbaux, Vincent Ribrag, Andrew D. Zelenetz, Roch Houot, Sattva S. Neelapu, Theodore Logan, Izidore S. Lossos, Walter Urba, Gilles Salles, et al. To cite this version: John Timmerman, Charles Herbaux, Vincent Ribrag, Andrew D. Zelenetz, Roch Houot, et al.. Ure- lumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma. American Journal of Hematology, Wiley, 2020, 95 (5), pp.510-520. 10.1002/ajh.25757. hal-02798009 HAL Id: hal-02798009 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02798009 Submitted on 23 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Received: 25 October 2019 Revised: 30 January 2020 Accepted: 5 February 2020 DOI: 10.1002/ajh.25757 RESEARCH ARTICLE Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma John Timmerman1 | Charles
    [Show full text]
  • Pharmaco-Immunomodulatory Therapy in COVID-19
    UC Irvine UC Irvine Previously Published Works Title Pharmaco-Immunomodulatory Therapy in COVID-19. Permalink https://escholarship.org/uc/item/9r8859hb Journal Drugs, 80(13) ISSN 0012-6667 Authors Rizk, John G Kalantar-Zadeh, Kamyar Mehra, Mandeep R et al. Publication Date 2020-09-01 DOI 10.1007/s40265-020-01367-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Drugs https://doi.org/10.1007/s40265-020-01367-z LEADING ARTICLE Pharmaco‑Immunomodulatory Therapy in COVID‑19 John G. Rizk1 · Kamyar Kalantar‑Zadeh2,3,4 · Mandeep R. Mehra5 · Carl J. Lavie6 · Youssef Rizk7 · Donald N. Forthal8,9 © Springer Nature Switzerland AG 2020 Abstract The severe acute respiratory syndrome coronavirus 2 associated coronavirus disease 2019 (COVID-19) illness is a syndrome of viral replication in concert with a host infammatory response. The cytokine storm and viral evasion of cellular immune responses may play an equally important role in the pathogenesis, clinical manifestation, and outcomes of COVID-19. Sys- temic proinfammatory cytokines and biomarkers are elevated as the disease progresses towards its advanced stages, and correlate with worse chances of survival. Immune modulators have the potential to inhibit cytokines and treat the cytokine storm. A literature search using PubMed, Google Scholar, and ClinicalTrials.gov was conducted through 8 July 2020 using the search terms ‘coronavirus’, ‘immunology’, ‘cytokine storm’, ‘immunomodulators’, ‘pharmacology’, ‘severe acute respira- tory syndrome 2’, ‘SARS-CoV-2’, and ‘COVID-19’. Specifc immune modulators include anti-cytokines such as interleukin (IL)-1 and IL-6 receptor antagonists (e.g. anakinra, tocilizumab, sarilumab, siltuximab), Janus kinase (JAK) inhibitors (e.g.
    [Show full text]
  • Immune Checkpoint Inhibition in DLBCL Immunotherapy: “The Cure Is Inside Us”
    Mariano Provencio Servicio de Oncología Médica Hospital Universitario Puerta de Hierro Immune checkpoint inhibition in DLBCL Immunotherapy: “The Cure is Inside Us” § Our immune system prevents or limit infections by foreign antigens expressed in microorganisms (bacteria, viruses, etc.) § Our immune system can also recognize and destroy cancer cells….. • However, cancer cells have developed “escape mechanisms” to avoid their destruction by immune cells…“put the brakes on” • Immuno-Oncology: Find ways of “unleashing” the power of our body’s immune system to treat or prevent cancer…T-lymphocytes (T- cells) Detectives Dendritic cells Killer –T cells Microenvironment antigen (flags) Detectives Dendritic cells Killer –T cells Tumor infiltranting T cell recognizable ags Cor e Algorithms Margin Neo-antigens antigen (flags) 5 6 Scott DW et al. Nature Rev 2014 Strategy approach § Effective immune response: barriers § microenviroment § Activate anti-tumor immune response § inhibitory receptors: blocking antibodies § Nivo, Pembro, Ipi,…(anti PD 1) (CTLA4) § combining 2 checkpoint inhibitors § combining with chemotherapy § activate receptors: agonist § Urelumab § Utumilumab § Varlilumab Strategy approach § Effective immune response: barriers § microenviroment Inactivated effector T cell angiogenesis metabolism Strategy approach PDL-1 Effective immune CTLA-4 response: barriers Lymphoma PDL-1 PD-1 PDL-1 TIM-3 PDL-1 PDL-1 mTOR LAG-3 OXPHOS MHC1 Aerobic glycolysis Interferon gamma EB virus T cell activation antigen presenting cells Strategy approach §
    [Show full text]
  • Immune-Checkpoint Blockade Therapy in Lymphoma
    International Journal of Molecular Sciences Review Immune-Checkpoint Blockade Therapy in Lymphoma Ayumi Kuzume 1,2, SungGi Chi 1 , Nobuhiko Yamauchi 1 and Yosuke Minami 1,* 1 Department of Hematology, National Cancer Center Hospital East, Kashiwa 277–8577, Japan; [email protected] (A.K.); [email protected] (S.C.); [email protected] (N.Y.) 2 Department of Hematology, Kameda Medical Center, Kamogawa 296–8602, Japan * Correspondence: [email protected]; Tel.: +81-4-7133-1111; Fax: +81-7133-6502 Received: 11 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]