Computational Complexity for Continuous Time Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Computational Complexity for Continuous Time Dynamics VOLUME 83, NUMBER 7 PHYSICAL REVIEW LETTERS 16AUGUST 1999 Computational Complexity for Continuous Time Dynamics Hava T. Siegelmann and Asa Ben-Hur Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel Shmuel Fishman Department of Physics, Technion, Haifa 32000, Israel (Received 22 March 1999) Dissipative flows model a large variety of physical systems. In this Letter the evolution of such systems is interpreted as a process of computation; the attractor of the dynamics represents the output. A framework for an algorithmic analysis of dissipative flows is presented, enabling the comparison of the performance of discrete and continuous time analog computation models. A simple algorithm for finding the maximum of n numbers is analyzed, and shown to be highly efficient. The notion of tractable (polynomial) computation in the Turing model is conjectured to correspond to computation with tractable (analytically solvable) dynamical systems having polynomial complexity. PACS numbers: 05.45.–a, 89.70.+c, 89.80.+h The computation of a digital computer, and its mathe- The Hopfield neural network is a dynamical system matical abstraction, the Turing machine is described by which evolves to attractors which are interpreted as a map on a discrete configuration space. In recent years memories; the network is also used to solve optimization scientists have developed new approaches to computation, problems [2]. Brockett introduced a set of ODEs that some of them based on continuous time analog systems. perform various tasks such as sorting and solving linear The most promising are neuromorphic systems [1], mod- programming problems [9]. Numerous other applications els of human memory [2], and experimentally realizable can be found in [10]. An analytically solvable ODE quantum computers [3]. Although continuous time sys- for the linear programming problem was proposed by tems are widespread in experimental realizations, no the- Faybusovich [11]. Our theory is, to some extent, a ory exists for their algorithmic analysis. The standard continuation of their work, in that it provides a framework theory of computation and computational complexity [4] for the complexity analysis of continuous time algorithms. deals with computation in discrete time and in a discrete Our model is restricted to exponentially convergent configuration space, and is inadequate for the description autonomous dissipative ODEs of such systems. This Letter describes an attempt to fill dx ෇ F͑x͒ , (1) this gap. Our model of a computer is based on dissipa- dt tive dynamical systems (DDS), characterized by flow to for x [ ޒn and F,ann-dimensional vector field, where attractors, which are a natural choice for the output of a n depends on the input. For a given problem, F takes computation. This makes our theory realizable by small- the same mathematical form, and only the length of the scale classical physical systems (since there dissipation is various objects in it (vectors, tensors, etc.) depends on usually not negligible) [5]. We define a measure of com- the size of the instance, corresponding to “uniformity” putational complexity which reflects the convergence time in computer science [12]. We discuss only systems with of a physical implementation of the continuous flow, en- fixed point attractors, and the term attractor will be used abling a comparison of the efficiency of continuous time to denote an attracting fixed point. We study only au- algorithms with discrete ones. On the conceptual level, tonomous systems since for these the time parameter is the framework introduced here strengthens the connection not arbitrary (contrary to nonautonmous ones): under any between the theory of computational complexity and the nonlinear transformation of the time parameter the sys- field of dynamical systems. tem is no longer autonomous, as will be explained in what Turing universality of dynamical systems is a funda- follows. The restricted class of exponentially convergent mental issue; see [6] and a recent book [7]. A system of vector fields describes the “typical” convergence scenario ordinary differential equations (ODEs) which simulates a for dynamical systems [13]. Structural stability of expo- Turing machine was constructed in [8]. Such construc- nentially convergent flows is an important property for tions retain the discrete nature of the simulated map, in analog computers. As a further justification we argue that they follow its computation step by step by a continu- that exponential convergence is a prerequisite for efficient ous equation. In the present Letter, on the other hand, we computation, provided the computation requires reaching consider continuous systems as is, and interpret their dy- the asymptotic regime, as is usually the case. Asymptoti- ͞ ء namics as a process of computation. cally, jx͑t͒ 2 x j ϳ e2t tch [see Eq. (5)]. When a tra- The view of the process of computation as a flow to jectory is close to its attractor, in a time tch ln2 a digit an attractor has been taken by a number of researchers. of the attractor is computed. Thus the computation of L 0031-9007͞99͞83(7)͞1463(4)$15.00 © 1999 The American Physical Society 1463 VOLUME 83, NUMBER 7 PHYSICAL REVIEW LETTERS 16AUGUST 1999 digits requires a time which scales as tchL. This is in linear transformation effectively changes the system itself. contrast with polynomially convergent vector fields: Sup- Therefore we suggest autonomous systems as representing j ϳ t2b for some b.0, then in or- the intrinsic complexity of the class of systems that can beءpose that jx͑t͒ 2 x .with L significant digits, we need to obtained from them by changing the time parameter ءder to compute x j , 22L,ort . 2L͞b, for an exponential The evolution of a DDS reaches an attractor only in theءhave jx͑t͒ 2 x time complexity. infinite time limit. Therefore for any finite time we can Last, we concentrate on ODEs with a formal solution, compute it only to some finite precision. This is sufficient since for these, complexity is readily analyzed, and it since for combinatorial problems with integer or rational is easy to provide criteria for halting a computation. inputs, the set of fixed points (the possible solutions) Dynamical systems with an analytical solution are an will be distributed on a grid of some finite precision. A exception. But despite their scarcity, we argue later that computation will be halted when the attractor is computed a subclass of analytically solvable DDS’s which converge with enough precision to infer a solution to the associated exponentially to fixed point attractors are a counterpart problem by rounding to the nearest grid point. for the classical complexity class P. This then suggests The phase space evolution of a trajectory may be rather a correspondence between tractability in the realm of complicated, and a major problem is to decide when a dynamical systems and tractability in the Turing model. point approached by the trajectory is indeed the attractor The input of a DDS can be modeled in various of the dynamics, and not a saddle point. An attractor ways. One possible choice is the initial condition. This is certified by its attracting region which is a subset of is appropriate when the aim of the computation is to the trapping set of the attractor in which the distance decide to which attractor out of many possible ones the from the attractor is monotonically decreasing in time. system flows. This approach was pursued in [14]. The The convergence time to an attracting region U, tc͑U͒ is main problem within this approach is related to initial the time it takes for a trajectory starting from the initial conditions in the vicinity of basin boundaries. The flow in condition x0 to enter U. the vicinity of the boundary is slow, resulting in very long When the computation has reached the attracting region computation times. In the present Letter, on the other of a fixed point, and is also within the precision required hand, the parameters on which the vector field depends for solving the problem, ep, the computation can be are the input, and the initial condition is a function of halted. We thus define the halting region of a DDS the input, chosen in the correct basin, and far from basin with attracting region U and required precision ep as ء ء boundaries to obtain an efficient computation. For the H ෇ U > B͑x , ep͒, where B͑x , ep͒ is a ball of radius ء gradient vector field equation (7), designed to find the ep around the attractor x . The computation time is the maximum of n numbers, the n numbers c constitute i convergence time to the halting region, tc͑H͒, given by the input, and the initial condition given by (11) is untypically simple. More generally, when dealing with tc͑H͒ ෇ max͓tc͑ep͒, tc͑U͔͒ , (2) the problem of optimizing some cost function E͑x͒, e.g., ء by a gradient flow xᠨ ෇ gradE͑x͒, an instance of the where tc͑ep͒ is the convergence time to B͑x , ep͒. problem is specified by the parameters of E͑x͒, i.e., by In general, we cannot calculate tc͑H͒ for a DDS the parameters of the vector field. algorithm. Thus we resort to halting by a bound on the The vector x͑t͒ represents the state of the correspond- computation time of all instances of size L: ing physical system at time t. The time parameter is ͑ ͒ ෇ ͑ ͑ ͒͒͒ thus time as measured in the laboratory, and has a well- T L max tc H P , (3) jPj෇L defined meaning. Therefore we suggest it as a measure of the time complexity of a computation. However, for where P denotes the input, and L ෇ jPj is its size in nonautonomous ODEs that are not directly associated bits. The definition of the input size depends on the with physical systems, the time parameter seems to be input space considered.
Recommended publications
  • A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
    A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity).
    [Show full text]
  • A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
    A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et.
    [Show full text]
  • Thermodynamic Properties of Coupled Map Lattices 1 Introduction
    Thermodynamic properties of coupled map lattices J´erˆome Losson and Michael C. Mackey Abstract This chapter presents an overview of the literature which deals with appli- cations of models framed as coupled map lattices (CML’s), and some recent results on the spectral properties of the transfer operators induced by various deterministic and stochastic CML’s. These operators (one of which is the well- known Perron-Frobenius operator) govern the temporal evolution of ensemble statistics. As such, they lie at the heart of any thermodynamic description of CML’s, and they provide some interesting insight into the origins of nontrivial collective behavior in these models. 1 Introduction This chapter describes the statistical properties of networks of chaotic, interacting el- ements, whose evolution in time is discrete. Such systems can be profitably modeled by networks of coupled iterative maps, usually referred to as coupled map lattices (CML’s for short). The description of CML’s has been the subject of intense scrutiny in the past decade, and most (though by no means all) investigations have been pri- marily numerical rather than analytical. Investigators have often been concerned with the statistical properties of CML’s, because a deterministic description of the motion of all the individual elements of the lattice is either out of reach or uninteresting, un- less the behavior can somehow be described with a few degrees of freedom. However there is still no consistent framework, analogous to equilibrium statistical mechanics, within which one can describe the probabilistic properties of CML’s possessing a large but finite number of elements.
    [Show full text]
  • Writing the History of Dynamical Systems and Chaos
    Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • A Simple Scalar Coupled Map Lattice Model for Excitable Media
    This is a repository copy of A simple scalar coupled map lattice model for excitable media. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74667/ Monograph: Guo, Y., Zhao, Y., Coca, D. et al. (1 more author) (2010) A simple scalar coupled map lattice model for excitable media. Research Report. ACSE Research Report no. 1016 . Automatic Control and Systems Engineering, University of Sheffield Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S. A. Billings Research Report No. 1016 Department of Automatic Control and Systems Engineering The University of Sheffield Mappin Street, Sheffield, S1 3JD, UK 8 September 2010 A Simple Scalar Coupled Map Lattice Model for Excitable Media Yuzhu Guo, Yifan Zhao, Daniel Coca, and S.A.
    [Show full text]
  • Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected]
    Occam's Razor Volume 6 (2016) Article 7 2016 Deterministic Chaos: Applications in Cardiac Electrophysiology Misha Klassen Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/orwwu Part of the Medicine and Health Sciences Commons Recommended Citation Klassen, Misha (2016) "Deterministic Chaos: Applications in Cardiac Electrophysiology," Occam's Razor: Vol. 6 , Article 7. Available at: https://cedar.wwu.edu/orwwu/vol6/iss1/7 This Research Paper is brought to you for free and open access by the Western Student Publications at Western CEDAR. It has been accepted for inclusion in Occam's Razor by an authorized editor of Western CEDAR. For more information, please contact [email protected]. Klassen: Deterministic Chaos DETERMINISTIC CHAOS APPLICATIONS IN CARDIAC ELECTROPHYSIOLOGY BY MISHA KLASSEN I. INTRODUCTION Our universe is a complex system. It is made up A system must have at least three dimensions, of many moving parts as a dynamic, multifaceted and nonlinear characteristics, in order to generate machine that works in perfect harmony to create deterministic chaos. When nonlinearity is introduced the natural world that allows us life. e modeling as a term in a deterministic model, chaos becomes of dynamical systems is the key to understanding possible. ese nonlinear dynamical systems are seen the complex workings of our universe. One such in many aspects of nature and human physiology. complexity is chaos: a condition exhibited by an is paper will discuss how the distribution of irregular or aperiodic nonlinear deterministic system. blood throughout the human body, including factors Data that is generated by a chaotic mechanism will a ecting the heart and blood vessels, demonstrate appear scattered and random, yet can be dened by chaotic behavior.
    [Show full text]
  • Math Morphing Proximate and Evolutionary Mechanisms
    Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales.
    [Show full text]
  • Attractors: Nonstrange to Chaotic
    1 Attractors: Nonstrange to Chaotic Robert L. V. Taylor The College of Wooster [email protected] Advised by Dr. John David The College of Wooster [email protected] Abstract—The theory of chaotic dynamical systems can particular, a strange attractor. It is a common miscon- be a tricky area of study for a non-expert to break into. ception among non-experts that the term strange attractor Because the theory is relatively recent, the new student finds is simply another way of saying chaotic attractor. We himself immersed in a subject with very few clear and intuitive definitions. This paper aims to carve out a small will show why this is not necessarily true. In Section section of the theory of chaotic dynamical systems – that III, we apply these ideas by classifying and identifying of attractors – and outline its fundamental concepts from a properties of several example attractors. computational mathematics perspective. The motivation for It is assumed that the reader has a rudimentary under- this paper is primarily to define what an attractor is and standing of dynamical systems. For example, the reader to clarify what distinguishes its various types (nonstrange, strange nonchaotic, and strange chaotic). Furthermore, by should be familiar with basic concepts concerning initial providing some examples of attractors and explaining how conditions, orbits, and the differences between real and and why they are classified, we hope to provide the reader discrete systems. with a good feel for the fundamental connection between fractal geometry and the existence of chaos. II. Mathematical Concepts A. Fractals and Dimension I. Introduction Simply put, a fractal is a geometric object that is self- HE theory of dynamical systems is an extremely similar on all scales.
    [Show full text]
  • THE DYNAMICAL SYSTEMS APPROACH to DIFFERENTIAL EQUATIONS INTRODUCTION the Mathematical Subject We Call Dynamical Systems Was
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, July 1984 THE DYNAMICAL SYSTEMS APPROACH TO DIFFERENTIAL EQUATIONS BY MORRIS W. HIRSCH1 This harmony that human intelligence believes it discovers in nature —does it exist apart from that intelligence? No, without doubt, a reality completely independent of the spirit which conceives it, sees it or feels it, is an impossibility. A world so exterior as that, even if it existed, would be forever inaccessible to us. But what we call objective reality is, in the last analysis, that which is common to several thinking beings, and could be common to all; this common part, we will see, can be nothing but the harmony expressed by mathematical laws. H. Poincaré, La valeur de la science, p. 9 ... ignorance of the roots of the subject has its price—no one denies that modern formulations are clear, elegant and precise; it's just that it's impossible to comprehend how any one ever thought of them. M. Spivak, A comprehensive introduction to differential geometry INTRODUCTION The mathematical subject we call dynamical systems was fathered by Poin­ caré, developed sturdily under Birkhoff, and has enjoyed a vigorous new growth for the last twenty years. As I try to show in Chapter I, it is interesting to look at this mathematical development as the natural outcome of a much broader theme which is as old as science itself: the universe is a sytem which changes in time. Every mathematician has a particular way of thinking about mathematics, but rarely makes it explicit.
    [Show full text]
  • Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction
    systems Communication Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction Geoff Boeing Department of City and Regional Planning, University of California, Berkeley, CA 94720, USA; [email protected]; Tel.: +1-510-642-6000 Academic Editor: Ockie Bosch Received: 7 September 2016; Accepted: 7 November 2016; Published: 13 November 2016 Abstract: Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior. Keywords: visualization; nonlinear dynamics; chaos; fractal; attractor; bifurcation; dynamical systems; prediction; python; logistic map 1. Introduction Chaos theory is a branch of mathematics that deals with nonlinear dynamical systems.
    [Show full text]
  • Dynamical Systems, Prediction, Inference. Time Series Data
    Modeling time series data - understanding the underlying processes Dynamical systems, prediction, inference. Time series data Values of a variable or variables that come with a time stamp. Time can be continuous: x(t) or discrete ..., xt T , ..., xt, xt+1, ..., xt+T , ... − ! The intervals between measurements do not have to be equal. Analysis tools Many! Some examples: Frequency analysis: Fourier, wavelet, etc: find representation of time dependent signal x(t) in frequency domain, using different basis functions (sinusoids, step functions, ...). Nonlinear analysis: Poincare map, deterministic chaos. Models Linear models. Examples: LPC (linear predictive coding), linear filters. Nonlinear models: Dynamical Systems modeling - model of the underlying process. Dynamical System = {State space S; Dynamic f: S -> S; Initial condition} s˙ = f(s) Dynamic = equations of motion s(t) = f[s(t 1)] − p(s! s) s, s! S or: transition probabilities | ∈ Tasks Prediction: infer future from past Understanding: build model that gives insight into underlying physical phenomena Diagnostic: what possible pasts may have let to current state? Applications financial and economic forecasting environmental modeling medical diagnosis industrial equipment diagnosis speech recognition many more... Linear models and LPC Linear model: y = αixi i M Possible use: !∈ Interpolation - y = xˆ , k / M k ∈ Prediction - xi = xt; y = xˆt+1 Task: find those parameters α i, that minimize the mean squared error (MSE). Prediction (linear filters) T Model: xˆt+1 = αixt i − i=0 ! 1 MSE: (x xˆ )2 = ? 2 t+1 − t+1 ! " Set derivative w.r.t. α ito zero => system of linear equations => solution. Prediction (linear filters) T Model: xˆt+1 = αixt i − i=0 MSE: ! 1 2 1 (xt+1 xˆt+1) = αiαj xt ixt j 2 − 2 " − − # i j ! " # # 1 2 αi xt ixt+1 + xt+1 − " − # 2 i # ! Derivative: αj xt ixt j xt ixt+1 = 0 ! − − " − ! − " j ! In matrix notation: α!C = !γ Cij = xt ixt j ! − − " 1 γi = xt ixt+1 Solution: α! = !γC− ! − " Issues Need to compute the ensemble average - in reality replace that by a time average.
    [Show full text]