THE DYNAMICAL SYSTEMS APPROACH to DIFFERENTIAL EQUATIONS INTRODUCTION the Mathematical Subject We Call Dynamical Systems Was
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHAOS and DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET
MATH-UA 264.001 – CHAOS AND DYNAMICAL SYSTEMS Spring 2021 Lectures: Monday, Wednesday, 11:00–12:15PM ET Recitation: Friday, 12:30–1:45PM ET Objectives Dynamical systems theory is the branch of mathematics that studies the properties of iterated action of maps on spaces. It provides a mathematical framework to characterize a great variety of time-evolving phenomena in areas such as physics, ecology, and finance, among many other disciplines. In this class we will study dynamical systems that evolve in discrete time, as well as continuous-time dynamical systems described by ordinary di↵erential equations. Of particular focus will be to explore and understand the qualitative properties of dynamics, such as the existence of attractors, periodic orbits and chaos. We will do this by means of mathematical analysis, as well as simple numerical experiments. List of topics • One- and two-dimensional maps. • Linearization, stable and unstable manifolds. • Attractors, chaotic behavior of maps. • Linear and nonlinear continuous-time systems. • Limit sets, periodic orbits. • Chaos in di↵erential equations, Lyapunov exponents. • Bifurcations. Contact and office hours • Instructor: Dimitris Giannakis, [email protected]. Office hours: Monday 5:00-6:00PM and Wednesday 4:30–5:30PM ET. • Recitation Leader: Wenjing Dong, [email protected]. Office hours: Tuesday 4:00-5:00PM ET. Textbooks • Required: – Alligood, Sauer, Yorke, Chaos: An Introduction to Dynamical Systems, Springer. Available online at https://link.springer.com/book/10.1007%2Fb97589. • Recommended: – Strogatz, Nonlinear Dynamics and Chaos. – Hirsch, Smale, Devaney, Di↵erential Equations, Dynamical Systems, and an Introduction to Chaos. Available online at https://www.sciencedirect.com/science/book/9780123820105. -
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods Yi Ding Panos Toulis University of Chicago University of Chicago Department of Computer Science Booth School of Business Abstract In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regres- sion model to estimate causal effects post- intervention. In this setting, we propose to screen out control units that have a weak dy- Figure 1: A Lorenz attractor plotted in 3D. namical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control However, in many real-world settings, different vari- units, which is usually an important concern. ables exhibit dynamic interdependence, sometimes We illustrate on real-world applications, in- showing positive correlation and sometimes negative. cluding the tobacco legislation example of Such ephemeral correlations can be illustrated with Abadie et al.(2010), and Brexit. a popular dynamical system shown in Figure1, the Lorenz system (Lorenz, 1963). The trajectory resem- bles a butterfly shape indicating varying correlations 1 Introduction at different times: in one wing of the shape, variables X and Y appear to be positively correlated, and in the In causal inference, we compare outcomes of units who other they are negatively correlated. Such dynamics received the treatment with outcomes from units who present new methodological challenges for causal in- did not. -
2.3: Modeling with Differential Equations Some General Comments: a Mathematical Model Is an Equation Or Set of Equations That Mi
2.3: Modeling with Differential Equations Some General Comments: A mathematical model is an equation or set of equations that mimic the behavior of some phenomenon under certain assumptions/approximations. Phenomena that contain rates/change can often be modeled with differential equations. Disclaimer: In forming a mathematical model, we make various assumptions and simplifications. I am never going to claim that these models perfectly fit physical reality. But mathematical modeling is a key component of the following scientific method: 1. We make assumptions (a hypothesis) and form a model. 2. We mathematically analyze the model. (For differential equations, these are the techniques we are learning this quarter). 3. If the model fits the phenomena well, then we have evidence that the assumptions of the model might be valid. If the model fits the phenomena poorly, then we learn that some of our assumptions are invalid (so we still learn something). Concerning this course: I am not expecting you to be an expect in forming mathematical models. For this course and on exams, I expect that: 1. You understand how to do all the homework! If I give you a problem on the exam that is very similar to a homework problem, you must be prepared to show your understanding. 2. Be able to translate a basic statement involving rates and language like in the homework. See my previous posting on applications for practice (and see homework from 1.1, 2.3, 2.5 and throughout the other assignments). 3. If I give an application on an exam that is completely new and involves language unlike homework, then I will give you the differential equation (you won’t have to make up a new model). -
Category Theory for Autonomous and Networked Dynamical Systems
Discussion Category Theory for Autonomous and Networked Dynamical Systems Jean-Charles Delvenne Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; [email protected] Received: 7 February 2019; Accepted: 18 March 2019; Published: 20 March 2019 Abstract: In this discussion paper we argue that category theory may play a useful role in formulating, and perhaps proving, results in ergodic theory, topogical dynamics and open systems theory (control theory). As examples, we show how to characterize Kolmogorov–Sinai, Shannon entropy and topological entropy as the unique functors to the nonnegative reals satisfying some natural conditions. We also provide a purely categorical proof of the existence of the maximal equicontinuous factor in topological dynamics. We then show how to define open systems (that can interact with their environment), interconnect them, and define control problems for them in a unified way. Keywords: ergodic theory; topological dynamics; control theory 1. Introduction The theory of autonomous dynamical systems has developed in different flavours according to which structure is assumed on the state space—with topological dynamics (studying continuous maps on topological spaces) and ergodic theory (studying probability measures invariant under the map) as two prominent examples. These theories have followed parallel tracks and built multiple bridges. For example, both have grown successful tools from the interaction with information theory soon after its emergence, around the key invariants, namely the topological entropy and metric entropy, which are themselves linked by a variational theorem. The situation is more complex and heterogeneous in the field of what we here call open dynamical systems, or controlled dynamical systems. -
An Introduction to Mathematical Modelling
An Introduction to Mathematical Modelling Glenn Marion, Bioinformatics and Statistics Scotland Given 2008 by Daniel Lawson and Glenn Marion 2008 Contents 1 Introduction 1 1.1 Whatismathematicalmodelling?. .......... 1 1.2 Whatobjectivescanmodellingachieve? . ............ 1 1.3 Classificationsofmodels . ......... 1 1.4 Stagesofmodelling............................... ....... 2 2 Building models 4 2.1 Gettingstarted .................................. ...... 4 2.2 Systemsanalysis ................................. ...... 4 2.2.1 Makingassumptions ............................. .... 4 2.2.2 Flowdiagrams .................................. 6 2.3 Choosingmathematicalequations. ........... 7 2.3.1 Equationsfromtheliterature . ........ 7 2.3.2 Analogiesfromphysics. ...... 8 2.3.3 Dataexploration ............................... .... 8 2.4 Solvingequations................................ ....... 9 2.4.1 Analytically.................................. .... 9 2.4.2 Numerically................................... 10 3 Studying models 12 3.1 Dimensionlessform............................... ....... 12 3.2 Asymptoticbehaviour ............................. ....... 12 3.3 Sensitivityanalysis . ......... 14 3.4 Modellingmodeloutput . ....... 16 4 Testing models 18 4.1 Testingtheassumptions . ........ 18 4.2 Modelstructure.................................. ...... 18 i 4.3 Predictionofpreviouslyunuseddata . ............ 18 4.3.1 Reasonsforpredictionerrors . ........ 20 4.4 Estimatingmodelparameters . ......... 20 4.5 Comparingtwomodelsforthesamesystem . ......... -
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music
A Gentle Introduction to Dynamical Systems Theory for Researchers in Speech, Language, and Music. Talk given at PoRT workshop, Glasgow, July 2012 Fred Cummins, University College Dublin [1] Dynamical Systems Theory (DST) is the lingua franca of Physics (both Newtonian and modern), Biology, Chemistry, and many other sciences and non-sciences, such as Economics. To employ the tools of DST is to take an explanatory stance with respect to observed phenomena. DST is thus not just another tool in the box. Its use is a different way of doing science. DST is increasingly used in non-computational, non-representational, non-cognitivist approaches to understanding behavior (and perhaps brains). (Embodied, embedded, ecological, enactive theories within cognitive science.) [2] DST originates in the science of mechanics, developed by the (co-)inventor of the calculus: Isaac Newton. This revolutionary science gave us the seductive concept of the mechanism. Mechanics seeks to provide a deterministic account of the relation between the motions of massive bodies and the forces that act upon them. A dynamical system comprises • A state description that indexes the components at time t, and • A dynamic, which is a rule governing state change over time The choice of variables defines the state space. The dynamic associates an instantaneous rate of change with each point in the state space. Any specific instance of a dynamical system will trace out a single trajectory in state space. (This is often, misleadingly, called a solution to the underlying equations.) Description of a specific system therefore also requires specification of the initial conditions. In the domain of mechanics, where we seek to account for the motion of massive bodies, we know which variables to choose (position and velocity). -
Lecture Notes1 Mathematical Ecnomics
Lecture Notes1 Mathematical Ecnomics Guoqiang TIAN Department of Economics Texas A&M University College Station, Texas 77843 ([email protected]) This version: August, 2020 1The most materials of this lecture notes are drawn from Chiang’s classic textbook Fundamental Methods of Mathematical Economics, which are used for my teaching and con- venience of my students in class. Please not distribute it to any others. Contents 1 The Nature of Mathematical Economics 1 1.1 Economics and Mathematical Economics . 1 1.2 Advantages of Mathematical Approach . 3 2 Economic Models 5 2.1 Ingredients of a Mathematical Model . 5 2.2 The Real-Number System . 5 2.3 The Concept of Sets . 6 2.4 Relations and Functions . 9 2.5 Types of Function . 11 2.6 Functions of Two or More Independent Variables . 12 2.7 Levels of Generality . 13 3 Equilibrium Analysis in Economics 15 3.1 The Meaning of Equilibrium . 15 3.2 Partial Market Equilibrium - A Linear Model . 16 3.3 Partial Market Equilibrium - A Nonlinear Model . 18 3.4 General Market Equilibrium . 19 3.5 Equilibrium in National-Income Analysis . 23 4 Linear Models and Matrix Algebra 25 4.1 Matrix and Vectors . 26 i ii CONTENTS 4.2 Matrix Operations . 29 4.3 Linear Dependance of Vectors . 32 4.4 Commutative, Associative, and Distributive Laws . 33 4.5 Identity Matrices and Null Matrices . 34 4.6 Transposes and Inverses . 36 5 Linear Models and Matrix Algebra (Continued) 41 5.1 Conditions for Nonsingularity of a Matrix . 41 5.2 Test of Nonsingularity by Use of Determinant . -
Arxiv:0705.1142V1 [Math.DS] 8 May 2007 Cases New) and Are Ripe for Further Study
A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE NATALIE PRIEBE FRANK Abstract. This paper is intended to provide an introduction to the theory of substitution tilings. For our purposes, tiling substitution rules are divided into two broad classes: geometric and combi- natorial. Geometric substitution tilings include self-similar tilings such as the well-known Penrose tilings; for this class there is a substantial body of research in the literature. Combinatorial sub- stitutions are just beginning to be examined, and some of what we present here is new. We give numerous examples, mention selected major results, discuss connections between the two classes of substitutions, include current research perspectives and questions, and provide an extensive bib- liography. Although the author attempts to fairly represent the as a whole, the paper is not an exhaustive survey, and she apologizes for any important omissions. 1. Introduction d A tiling substitution rule is a rule that can be used to construct infinite tilings of R using a finite number of tile types. The rule tells us how to \substitute" each tile type by a finite configuration of tiles in a way that can be repeated, growing ever larger pieces of tiling at each stage. In the d limit, an infinite tiling of R is obtained. In this paper we take the perspective that there are two major classes of tiling substitution rules: those based on a linear expansion map and those relying instead upon a sort of \concatenation" of tiles. The first class, which we call geometric tiling substitutions, includes self-similar tilings, of which there are several well-known examples including the Penrose tilings. -
Topological Entropy and Distributional Chaos in Hereditary Shifts with Applications to Spacing Shifts and Beta Shifts
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2013.33.2451 DYNAMICAL SYSTEMS Volume 33, Number 6, June 2013 pp. 2451{2467 TOPOLOGICAL ENTROPY AND DISTRIBUTIONAL CHAOS IN HEREDITARY SHIFTS WITH APPLICATIONS TO SPACING SHIFTS AND BETA SHIFTS Dedicated to the memory of Professor Andrzej Pelczar (1937-2010). Dominik Kwietniak Faculty of Mathematics and Computer Science Jagiellonian University in Krak´ow ul.Lojasiewicza 6, 30-348 Krak´ow,Poland (Communicated by Llu´ısAlsed`a) Abstract. Positive topological entropy and distributional chaos are charac- terized for hereditary shifts. A hereditary shift has positive topological entropy if and only if it is DC2-chaotic (or equivalently, DC3-chaotic) if and only if it is not uniquely ergodic. A hereditary shift is DC1-chaotic if and only if it is not proximal (has more than one minimal set). As every spacing shift and every beta shift is hereditary the results apply to those classes of shifts. Two open problems on topological entropy and distributional chaos of spacing shifts from an article of Banks et al. are solved thanks to this characterization. Moreover, it is shown that a spacing shift ΩP has positive topological entropy if and only if N n P is a set of Poincar´erecurrence. Using a result of Kˇr´ıˇzan example of a proximal spacing shift with positive entropy is constructed. Connections between spacing shifts and difference sets are revealed and the methods of this paper are used to obtain new proofs of some results on difference sets. 1. Introduction. A hereditary shift is a (one-sided) subshift X such that x 2 X and y ≤ x (coordinate-wise) imply y 2 X. -
Topological Dynamics of Ordinary Differential Equations and Kurzweil Equations*
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF DIFFERENTIAL EQUATIONS 23, 224-243 (1977) Topological Dynamics of Ordinary Differential Equations and Kurzweil Equations* ZVI ARTSTEIN Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 Received March 25, 1975; revised September 4, 1975 1. INTRODUCTION A basic construction in applying topological dynamics to nonautonomous ordinary differential equations f =f(x, s) is to consider limit points (when 1 t 1 + co) of the translatesf, , wheref,(x, s) = f(~, t + s). A limit point defines a limiting equation and there is a tight relation- ship between the behavior of solutions of the original equation and of the limiting equations (see [l&13]). I n order to carry out this construction one has to specify the meaning of the convergence of ft , and this convergence has to have certain properties which we shall discuss later. In this paper we shall encounter a phenomenon which seems to be new in the context of applications of topological dynamics. The limiting equations will not be ordinary differential equations. We shall work under assumptions that do not guarantee that the space of ordinary equations is complete and we shall have to consider a completion of the space. Almost two decades ago Kurzweil [3] introduced what he called generalized ordinary differential equations and what we call Kurzweil equations. We shall see that if we embed our ordinary equations in a space of Kurzweil equations we get a complete and compact space, and the techniques of topological dynamics can be applied. -
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows A. M. Selvam and S. Fadnavis Email: [email protected] Website: http://www.geocities.com/amselvam Trends in Continuum Physics, TRECOP ’98; Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, Poland, August 17-20, 1998. Edited by Bogdan T. Maruszewski, Wolfgang Muschik, and Andrzej Radowicz. Singapore, World Scientific, 1999, 334(12). 1. INTRODUCTION Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years) (Tessier et. al., 1996) Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality (Bak et. al., 1988) Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations (Mary Selvam, 1993). Round- off error will propagate to the mainstream computation and give unrealistic solutions in numerical weather prediction (NWP) and climate models which incorporate thousands of iterative computations in long-term numerical integration schemes. A recently developed non-deterministic cell dynamical system model for atmospheric flows (Mary Selvam, 1990; Mary Selvam et. -
Chapter 5. Flow Maps and Dynamical Systems
Chapter 5 Flow Maps and Dynamical Systems Main concepts: In this chapter we introduce the concepts of continuous and discrete dynamical systems on phase space. Keywords are: classical mechanics, phase space, vector field, linear systems, flow maps, dynamical systems Figure 5.1: A solar system is well modelled by classical mechanics. (source: Wikimedia Commons) In Chapter 1 we encountered a variety of ODEs in one or several variables. Only in a few cases could we write out the solution in a simple closed form. In most cases, the solutions will only be obtainable in some approximate sense, either from an asymptotic expansion or a numerical computation. Yet, as discussed in Chapter 3, many smooth systems of differential equations are known to have solutions, even globally defined ones, and so in principle we can suppose the existence of a trajectory through each point of phase space (or through “almost all” initial points). For such systems we will use the existence of such a solution to define a map called the flow map that takes points forward t units in time from their initial points. The concept of the flow map is very helpful in exploring the qualitative behavior of numerical methods, since it is often possible to think of numerical methods as approximations of the flow map and to evaluate methods by comparing the properties of the map associated to the numerical scheme to those of the flow map. 25 26 CHAPTER 5. FLOW MAPS AND DYNAMICAL SYSTEMS In this chapter we will address autonomous ODEs (recall 1.13) only: 0 d y = f(y), y, f ∈ R (5.1) 5.1 Classical mechanics In Chapter 1 we introduced models from population dynamics.