Disorder of the Mevalonate Pathway Inhibits Calcium‑Induced Differentiation of Keratinocytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
ASPP2 Inhibits Tumor Growth by Repressing the Mevalonate Pathway
Liang et al. Cell Death and Disease (2019) 10:830 https://doi.org/10.1038/s41419-019-2054-7 Cell Death & Disease ARTICLE Open Access ASPP2 inhibits tumor growth by repressing the mevalonate pathway in hepatocellular carcinoma Beibei Liang1,RuiChen2, Shaohua Song3,HaoWang4,GuoweiSun5, Hao Yang1,WeiJing6, Xuyu Zhou6,ZhirenFu3, Gang Huang1 and Jian Zhao1 Abstract Cancer is, fundamentally, a disorder of cell growth and proliferation, which requires adequate supplies of energy and nutrients. In this study, we report that the haplo-insufficient tumor suppressor ASPP2, a p53 activator, negatively regulates the mevalonate pathway to mediate its inhibitory effect on tumor growth in hepatocellular carcinoma (HCC). Gene expression profile analysis revealed that the expression of key enzymes in the mevalonate pathway were increased when ASPP2 was downregulated. HCC cells gained higher cholesterol levels and enhanced tumor-initiating capability in response to the depletion of ASPP2. Simvastatin, a mevalonate pathway inhibitor, efficiently abrogated ASPP2 depletion-induced anchorage-independent cell proliferation, resistance to chemotherapy drugs in vitro, and tumor growth in xenografted nude mice. Mechanistically, ASPP2 interacts with SREBP-2 in the nucleus and restricts the transcriptional activity of SREBP-2 on its target genes, which include key enzymes involved in the mevalonate pathway. Moreover, clinical data revealed better prognosis in patients with high levels of ASPP2 and low levels of the mevalonate pathway enzyme HMGCR. Our findings provide functional and mechanistic insights into the critical role of ASPP2 in the regulation of the mevalonate pathway and the importance of this pathway in tumor initiation and tumor growth, which may provide a new therapeutic opportunity for HCC. -
Of Mevalonate Metabolism'
ICANCER RESEARCH57. 3498—3505.AugustIS. 9971 Regulation of Proliferation and Ras Localization in Transformed Cells by Products of Mevalonate Metabolism' Jennifer A. Cuthbert2 and Peter E. Lipsky Department of Internal Medicine. The Unit'ersitv of Texas Southwestern Medical (‘enterat Dallas. Dallas. Texas 75235-9151 ABSTRACT position 186, the removal of the three COOH-terminal amino acids at positions 187—189, and carboxymethylation of the new COOH-termi Lovastatin, an inhibitor of 3-hydroxy.3-methylglutaryl (HMG) CoA nab cysteine. In addition, either palmitybation of other cysteine resi reductase, and 6-fluoromevalonate (Fmev), an inhibitor of diphospho dues in the COOH terminus (H-Ras, N-Ras, and K-RasA) or a mevalonate decarboxylase, blocked the synthesis of downstream meval. onate products, including prenyl-derived lipids, and prevented membrane pobybasic domain (K-RasB) is important in enhancing membrane localization of Ras in the myeloid cell line U.937. In contrast to lovastatin, association (7). These processes occur stepwise, and the first step, that which induced cytosol localization of Ras in U-937 cells, Fmev failed to of farnesybation of the full-length polypeptide, is thereby essential for increase cytosolic Ras and also completely prevented the proliferation of plasma membrane localization (12—14).Thus, compounds and muta U.937 cells. Growth of U-937 cells was restored by the addition of lovas tions that block the process of farnesylation interfere with the trans tatin to Fmev-blocked cells. These results implied that a product of formation and proliferation that are dependent upon mutationally mevalonate metabolism proximal to isopentenyl diphosphate was respon. activated Ras. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
The Incretin Receptors for GLP-1 and GIP Are Essential for the Sustained Metabolic Actions of Vildagliptin in Mice
Diabetes Publish Ahead of Print, published online August 29, 2007 The incretin receptors for GLP-1 and GIP are essential for the sustained metabolic actions of vildagliptin in mice Grace Flock, Laurie L. Baggio, Christine Longuet and Daniel J. Drucker The Samuel Lunenfeld Research Institute, Department of Medicine, Mount Sinai Hospital and the Banting and Best Diabetes Center, University of Toronto, Toronto, Canada. Running title: Incretin receptors and mechanisms of DPP-4 action Address correspondence to: Dr. Daniel J. Drucker Mount Sinai Hospital SLRI Room 975C 600 University Avenue Toronto Ontario M5G 1X5 Received for publication 22 May 2007 and accepted in revised form 20 August 2007. Additional information can be found in an online appendix at http://diabetes.diabetesjournls.org. Copyright American Diabetes Association, Inc., 2007 Incretin receptors and mechanisms of DPP-4 action Abstract Objective: DPP4 inhibitors (DPP-4i) lower blood glucose in diabetic subjects however the mechanism of action through which these agents improve glucose homeostasis remains incompletely understood. Although GLP-1 and GIP represent important targets for DPP4 activity, whether additional substrates are important for the glucose-lowering actions of DPP4 inhibitors remains uncertain. Research Design and Methods: We examined the efficacy of continuous vildagliptin administration in wildtype (WT) and dual incretin receptor knockout (DIRKO) mice after 8 weeks of a high fat (HF)-diet. Results: Vildagliptin had no significant effect on food intake, energy expenditure, body composition, body weight gain or insulin sensitivity in WT or DIRKO mice. However glycemic excursion after oral glucose challenge was significantly reduced in WT but not in DIRKO mice after vildagliptin treatment. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Gain-Of-Function Effects of Mutant P53 Explored Using a Three
Gain-of-Function Effects of Mutant p53 Explored Using a Three- Dimensional Culture Model of Breast Cancer William A. Freed-Pastor Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2011 William A. Freed-Pastor All Rights Reserved ABSTRACT Gain-of-Function Effects of Mutant p53 Explored Using a Three-Dimensional Culture Model of Breast Cancer William A. Freed-Pastor p53 is the most frequent target for mutation in human tumors and mutation at this locus is a common and early event in breast carcinogenesis. Breast tumors with mutated p53 often contain abundant levels of this mutant protein, which has been postulated to actively contribute to tumorigenesis by acquiring pro-oncogenic (“gain- of-function”) properties. To elucidate how mutant p53 might contribute to mammary carcinogenesis, we employed a three-dimensional (3D) culture model of breast cancer. When placed in a laminin-rich extracellular matrix, non-malignant mammary epithelial cells form structures highly reminiscent for many aspects of acinar structures found in vivo. On the other hand, breast cancer cells, when placed in the same environment, form highly disorganized and sometimes invasive structures. Modulation of critical oncogenic signaling pathways has been shown to phenotypically revert breast cancer cells to a more acinar-like morphology. We examined the role of mutant p53 in this context by generating stable, regulatable p53 shRNA derivatives of mammary carcinoma cell lines to deplete endogenous mutant p53. We demonstrated that, depending on the cellular context, mutant p53 depletion is sufficient to significantly reduce invasion or in some cases actually induce a phenotypic reversion to more acinar-like structures in breast cancer cells grown in 3D culture. -
The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota. -
Construction and Optimization of Mevalonate Pathway for Production Of
Construction and Optimization of Mevalonate Pathway for Production of Isoprenoids in Escherichia coli by Farnaz Nowroozi A dissertation submitted in partial satisfaction of the requirements for the degree of Joint Doctor of Philosophy with University of California, San Francisco in Engineering-Bioengineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jay D. Keasling, Chair Professor Adam P. Arkin Professor Francis C. Szoka Professor Marc K. Hellerstein Fall 2009 1 The dissertation of Farnaz Foroughi-Boroujeni Nowroozi, titled Construction and Optimization of Mevalonate Pathway for production of Isoprenoids in Escherichia coli , is approved: Chair _______________________________ Date ____________________ _______________________________ Date____________________ _______________________________ Date ____________________ _______________________________ Date ____________________ University of California, Berkeley 2 Abstract Construction and Optimization of Mevalonate Pathway for production of Isoprenoids in Escherichia coli by Farnaz Foroughi-Boroujeni Nowroozi Doctor of Philosophy in Bioengineering University of California, Berkeley Professor Jay D. Keasling, Chair The isoprenoid family, containing over 50,000 members, constitutes one of the most structurally diverse groups of natural products. They range from essential and relatively universal primary metabolites, such as sterols, carotenoids, and hormones, to more unique secondary metabolites that serve roles in plant defense and communication and cellular and organismal development. Although these molecules have vast potential in medicine and industry their production is limited by two factors: 1- The yields from harvest and extraction of these compounds from their native sources are low 2- Due to their complex structure, synthetic routes to most isoprenoids are difficult and inefficient Therefore engineering metabolic pathways for production of large quantities of isoprenoids in a microbial host is an attractive approach. -
Engineering a Mevalonate Pathway in Escherichia Coli for Production of Terpenoids
ARTICLES Engineering a mevalonate pathway in Escherichia coli for production of terpenoids Vincent JJ Martin1,2,3, Douglas J Pitera1,3,Sydnor T Withers1,Jack D Newman1 & Jay D Keasling1 Isoprenoids are the most numerous and structurally diverse family of natural products. Terpenoids, a class of isoprenoids often isolated from plants, are used as commercial flavor and fragrance compounds and antimalarial or anticancer drugs. Because plant tissue extractions typically yield low terpenoid concentrations, we sought an alternative method to produce high-value terpenoid compounds, such as the antimalarial drug artemisinin, in a microbial host. We engineered the expression of a synthetic amorpha-4,11-diene synthase gene and the mevalonate isoprenoid pathway from Saccharomyces cerevisiae in Escherichia coli. Concentrations of amorphadiene, the sesquiterpene olefin precursor to artemisinin, reached 24 µg caryophyllene equivalent/ml. Because isopentenyl and dimethylallyl pyrophosphates are the universal precursors to all isoprenoids, the strains developed in this study can serve as platform hosts for the production of any terpenoid compound for which a terpene synthase gene is available. http://www.nature.com/naturebiotechnology Terpenoids comprise a highly diverse class of natural products from certain cancers10,11, and irufloven, a third-generation semisynthetic which numerous commercial flavors, fragrances and medicines are analog of the sesquiterpene illudin S that are in late-stage clinical derived. These valuable compounds are commonly isolated from trials for the treatment of various refractory and relapsed can- plants, microbes and marine organisms. For example, terpenoids cers12,13.In general, these drugs are extracted from the host plant, in extracted from plants are used as anticancer and antimalarial which they accumulate in very small amounts, before further drugs1,2.Because these compounds are naturally produced in small derivatization or use. -
Supplementary Table 2
Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942 -
Gene Expression Analysis of Mevalonate Kinase Deficiency
International Journal of Environmental Research and Public Health Article Gene Expression Analysis of Mevalonate Kinase Deficiency Affected Children Identifies Molecular Signatures Related to Hematopoiesis Simona Pisanti * , Marianna Citro , Mario Abate , Mariella Caputo and Rosanna Martinelli * Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Via Salvatore Allende, 84081 Baronissi (SA), Italy; [email protected] (M.C.); [email protected] (M.A.); [email protected] (M.C.) * Correspondence: [email protected] (S.P.); [email protected] (R.M.) Abstract: Mevalonate kinase deficiency (MKD) is a rare autoinflammatory genetic disorder charac- terized by recurrent fever attacks and systemic inflammation with potentially severe complications. Although it is recognized that the lack of protein prenylation consequent to mevalonate pathway blockade drives IL1β hypersecretion, and hence autoinflammation, MKD pathogenesis and the molecular mechanisms underlaying most of its clinical manifestations are still largely unknown. In this study, we performed a comprehensive bioinformatic analysis of a microarray dataset of MKD patients, using gene ontology and Ingenuity Pathway Analysis (IPA) tools, in order to identify the most significant differentially expressed genes and infer their predicted relationships into biological processes, pathways, and networks. We found that hematopoiesis linked biological functions and pathways are predominant in the gene ontology of differentially expressed genes in MKD, in line with the observed clinical feature of anemia. We also provided novel information about the molecular Citation: Pisanti, S.; Citro, M.; Abate, M.; Caputo, M.; Martinelli, R. mechanisms at the basis of the hematological abnormalities observed, that are linked to the chronic Gene Expression Analysis of inflammation and to defective prenylation.