Chapter 13 – Pharmacology of Muscle Relaxants and Their Antagonists Mohamed Naguib, Cynthia A

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 13 – Pharmacology of Muscle Relaxants and Their Antagonists Mohamed Naguib, Cynthia A Chapter 13 – Pharmacology of Muscle Relaxants and Their Antagonists Mohamed Naguib, Cynthia A. Lien HISTORY AND CLINICAL USE In 1942 Griffith and Johnson[1] suggested that d-tubocurarine (dTc) is a safe drug to use during surgery to provide skeletal muscle relaxation. One year later, Cullen[2] described its use in 131 patients who had received general anesthesia for their surgery. In 1954, Beecher and Todd[3] reported a sixfold increase in mortality in patients receiving dTc versus those who had not received a relaxant. The increased mortality was due to a general lack of understanding of the pharmacology of neuromuscular blockers and their antagonism. The impact of residual neuromuscular blockade postoperatively was not appreciated, guidelines for monitoring muscle strength had not been established, and the importance of pharmacologically antagonizing residual blockade was not understood. Since then, the understanding of neuromuscular blocker pharmacology has improved, and relaxants have become an important component of many anesthetics and have facilitated the growth of surgery into new areas with the use of innovative techniques.[4] Succinylcholine, introduced by Thesleff[5] and by Foldes and colleagues in 1952,[4] changed anesthetic practice drastically. Its rapid onset of effect and ultrashort duration of action allowed for rapid tracheal intubation. In 1967, Baird and Reid first reported on clinical administration of the synthetic aminosteroid pancuronium.[6] Though similar to dTc, in terms of its duration of action, this compound had an improved cardiovascular side effect profile. It lacked ganglionic-blocking and histamine-releasing properties and was mildly vagolytic. The resulting increases in heart rate and blood pressure were considered significant improvements over its predecessors. Unlike dTc or any of the nondepolarizing neuromuscular blockers previously used, none of which were metabolized, pancuronium underwent some hepatic metabolism through deacetylation of the acetoxy groups. Development of the intermediate-acting neuromuscular blockers built on compound metabolism and resulted in the introduction of vecuronium,[7] an aminosteroid, and atracurium,[8][9] a benzylisoquinolinium, into practice in the 1980s. These relaxants had little or no dependence on the kidney for elimination. The lack of cardiovascular effects of vecuronium established a benchmark for safety to which newer relaxants are still held.[7] Degradation of atracurium by Hofmann elimination removed any important influence of biologic disorders such as advanced age or organ failure on the pattern of neuromuscular blockade. Mivacurium, the first short-acting nondepolarizing neuromuscular blocker, was introduced into clinical practice in the 1990s,[10] as was rocuronium,[11] an intermediate-acting nondepolarizing blocker with a rapid onset of effect. Mivacurium, like the intermediate- acting compounds, is extensively metabolized. It is, however, metabolized by butyrylcholinesterase, the same enzyme that is responsible for the metabolism of succinylcholine. In terms of facilitating rapid endotracheal intubation, rocuronium is the Page 1 Pharmacology of Muscle Relaxants and Their Antagonists first nondepolarizing neuromuscular blocker considered to be a replacement for succinylcholine. Other neuromuscular blockers have been introduced into clinical practice since the use of dTc was first advocated. These blockers include pipecuronium, doxacurium, cisatracurium, and rapacuronium. Although all do not remain in use, each represented an advance or improvement in at least one aspect over its predecessors. Still other neuromuscular blockers, TAAC3[12] and 430A,[13] are undergoing investigation. Neuromuscular blockers should be administered only to anesthetized individuals to provide relaxation of skeletal muscles. They should not be administered to stop patient movement because they have no analgesic or amnestic properties. Awareness during surgery[14] and in the intensive care unit (ICU)[15] has been described in multiple publications. Neuromuscular blockers are valuable adjuncts to general anesthetics and should be used as such. As stated by Cullen and Larson, "muscle relaxants given inappropriately may provide the surgeon with optimal [operating] conditions in ... a patient [who] is paralyzed but not anesthetized— a state that [is] wholly unacceptable for the patient."[16] Additionally, "muscle relaxants used to cover up deficiencies in total anesthetic management ... represent an ... inappropriate use of the valuable adjuncts to anesthesia." To administer relaxants for maintenance of neuromuscular blockade intraoperatively, the patient's depth of neuromuscular block must be monitored and the depth of anesthesia continuously assessed. The use of neuromuscular blockers in the operating room is quite common and has been important in the growth and development of anesthesia and surgery. As stated by Foldes and coauthors,[4] "... [the] first use of ... muscle relaxants ... not only revolutionized the practice of anesthesia but also started the modern era of surgery and made possible the explosive development of cardiothoracic, neurologic and organ transplant surgery." Certainly, neuromuscular blockers are now routinely used to facilitate endotracheal intubation and are commonly used to maintain neuromuscular blockade through any number of different surgical procedures. This chapter will review the pharmacology and clinical use of neuromuscular blockers, as well as anticholinesterases, in the operating room. Diseases of the neuromuscular system are also discussed as regards their influence on the actions of neuromuscular blockers. Finally, the economics of providing neuromuscular blockade is also considered. PRINCIPLES OF ACTION OF NEUROMUSCULAR BLOCKERS AT THE NEUROMUSCULAR JUNCTION (also see Chapter 22) Postjunctional Effects In adult mammalian skeletal muscle, the nicotinic acetylcholine receptor (nAChR) is a pentameric complex of two α-subunits in association with single β-, δ-, and ϵ- subunits (Fig. 13-1). These subunits are organized to form a transmembrane pore (a channel), as well as the extracellular binding pockets for acetylcholine and other agonists or antagonists.[17] Each of the two α-subunits has an acetylcholine-binding site. These sites are proteins located in pockets approximately 3.0 nm above the surface membrane at the [18] interfaces of the αH-ϵ and αL-δ subunits. αH and αL indicate the high- and low- affinity binding sites for dTc and probably result from a contribution from the different Page 2 Pharmacology of Muscle Relaxants and Their Antagonists [19][20] neighboring subunits. For instance, the binding affinity of dTc for the αH-ϵ site [18][20][21] is approximately 100- to 500-fold higher than that for the αL-δ site. Fetal nAChR contains a γ-subunit instead of the adult ϵ-subunit. Mature nAChR has a shorter burst duration and exhibits higher conductance of Na+, K+, and Ca2+ than fetal nAChR does.[17][22] Figure 13-1 Subunit composition of the nicotinic acetylcholine receptor (nAChR) in the end-plate surface of adult mammalian muscle. The adult AChR is an intrinsic membrane protein with five distinct subunits (α2βδϵ). Each subunit contains four helical domains labeled M1 to M4. The M2 domain forms the channel pore. The upper panel shows a single α-subunit with its N and C termini on the extracellular surface of the membrane lipid bilayer. Between the N and C termini, the α-subunit forms four helices (M1, M2, M3, and M4) that span the membrane bilayer. The lower panel shows the pentameric structure of the nAChR of adult mammalian muscle. The N termini of two subunits cooperate to form two distinct binding pockets for acetylcholine (ACh). These pockets occur at the ϵ-α and the δ-α subunit interface. The M2 membrane-spanning domain of each subunit lines the ion channel. The doubly liganded ion channel has permeability equal to that of Na+ and K+; Ca2+ contributes approximately 2.5% to the total permeability. (Redrawn from Naguib M, Flood P, McArdle JJ, et al: Advances in neurobiology of the neuromuscular junction: Implications for the anesthesiologist. Anesthesiology 96:202–231, 2002.) Functionally, the ion channel of the acetylcholine receptor is closed in the resting state. Simultaneous binding of two acetylcholine molecules to the α-subunits[23] initiates conformational changes that open the channel.[24][25][26] On the other hand, it is enough for one molecule of a nondepolarizing neuromuscular blocker (a competitive antagonist) to bind to one subunit to produce a block.[27] Paul and coworkers[28] found a correlation Page 3 Pharmacology of Muscle Relaxants and Their Antagonists between the ED50 (the dose that produces 50% depression of twitch tension) and the potency of nondepolarizing blockers at the adult nAChR. Depolarizing neuromuscular blockers such as succinylcholine produce prolonged depolarization of the end-plate region that results in (1) desensitization of nAChR, (2) inactivation of voltage-gated sodium channels at the neuromuscular junction, and (3) increases in potassium permeability in the surrounding membrane (see Chapter 22 for details).[27] The end result is failure of action potential generation, and block ensues. It should be noted that although acetylcholine produces depolarization, under physiologic conditions it results in muscle contraction because it has a very short (few milliseconds) duration of action.[27] Acetylcholine is rapidly hydrolyzed by acetylcholinesterase[29]
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION α-Bungarotoxin (trifluoroacetate salt) Item No. 16385 Synonyms: α-Bgt, α-BTX Peptide Sequence: IVCHTTATSPISAVTCPPGENLCY Ile Val Cys His Thr Thr Ala Thr Ser Pro RKMWCDAFCSSRGKVVELGCAA Ile Ser Ala Val Thr Cys Pro Pro Gly Glu TCPSKKPYEEVTCCSTDKCNPHP KQRPG, trifluoroacetate salt Asn Leu Cys Tyr Arg Lys Met Trp Cys Asp (Modifications: Disulfide bridge between Ala Phe Cys Ser Ser Arg Gly Lys Val Val 3-23, 16-44, 29-33, 48-59, 60-65) Glu Leu Gly Cys Ala Ala Thr Cys Pro Ser MF: C338H529N97O105S11 • XCF3COOH FW: 7,984.2 Lys Lys Pro Tyr Glu Glu Val Thr Cys Cys Supplied as: A solid Ser Thr Asp Lys Cys Asn Pro His Pro Lys Storage: -20°C Gln Arg Pro Gly Stability: ≥2 years • XCF COOH Solubility: Soluble in aqueous buffers 3 Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures α-Bungarotoxin (trifluoroacetate salt) is supplied as a solid. A stock solution may be made by dissolving the α-bungarotoxin (trifluoroacetate salt) in water. The solubility of α-bungarotoxin (trifluoroacetate salt) in water is approximately 1 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description α-Bungarotoxin is a snake venom-derived toxin that irreversibly binds nicotinic acetylcholine receptors (Ki = ~2.5 µM in rat) present in skeletal muscle, blocking action of acetylcholine at the postsynaptic membrane and leading to paralysis.1-3 It has been widely used to characterize activity at the neuromuscular junction, which has numerous applications in neuroscience research.4,5 References 1.
    [Show full text]
  • Butyrylcholinesterase 'X
    Br. J. Pharmacol. (1993), 108, 914-919 "f" Macmillan Press Ltd, 1993 Degradation of acetylcholine in human airways: role of butyrylcholinesterase 'X. Norel, *M. Angrisani, C. Labat, I. Gorenne, E. Dulmet, *F. Rossi & C. Brink CNRS URA 1159, Centre Chirurgical Marie-Lannelongue, 133 av. de la R6sistance, 92350 Le Plessis-Robinson, France and *Department of Pharmacology and Toxicology, First Faculty of Medicine and Surgery, via Costantinopoli, 16, 80138 Naples, Italy 1 Neostigmine and BW284C51 induced concentration-dependent contractions in human isolated bron- chial preparations whereas tetraisopropylpyrophosphoramide (iso-OMPA) was inactive on airway rest- ing tone. 2 Neostigmine (0.1 pM) or iso-OMPA (100 pM) increased acetylcholine sensitivity in human isolated bronchial preparations but did not alter methacholine or carbachol concentration-effect curves. 3 In the presence of iso-OMPA (10 pM) the bronchial rings were more sensitive to neostigmine. The pD2 values were, control: 6.05 ± 0.15 and treated: 6.91 ± 0.14. 4 Neostigmine or iso-OMPA retarded the degradation of acetylcholine when this substrate was exogenously added to human isolated airways. A marked reduction of acetylcholine degradation was observed in the presence of both inhibitors. Exogenous butyrylcholine degradation was prevented by iso-OMPA (1O pM) but not by neostigmine (O.1 pM). 5 These results suggest the presence of butyrylcholinesterase activity in human bronchial muscle and this enzyme may co-regulate the degradation of acetylcholine in this tissue. Keywords: Human bronchus; butyrylcholinesterase; acetylcholinesterase; acetylcholine; butyrylcholine; tetraisopropylpyrophos- phoramide; neostigmine Introduction The inherent tone observed in human airways is maintained measurement of the degradation of exogenous ACh or butyr- by the local actions of neuronal inputs derived from the ylcholine (BuCh: specific substrate for BChE) were also per- parasympathetic nervous system.
    [Show full text]
  • Veterinary Emergency & Anaesthesia Pfizer
    AVA ECVA & AVEF Thank all their sponsors for this spring edition PARIS 2007 On VETERINARY EMERGENCY & ANAESTHESIA PFIZER MERIAL FORT DODGE BAYER BOEHRINGER MEDISUR COVETO OPTOMED HALLOWELL SCIL JANSSEN SOGEVAL KRUSSE TECHNIBELT MILA TEM The Organisatiors 7th AVEF European Meeting- 10th March 2007-ROISSY 2 AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France AVA PARIS 2007 — Wednesday March 7th RESIDENT DAY RUMINANT ANAESTHESIA Hyatt Regency Hotel, Roissy CDG, France K OTTO, D HOLOPHERNE, G TOUZOT 8.30 REGISTRATIONS 9.00-9.45 Specific anatomo-physiology to consider for ruminant peri-anaesthetic period K OTTO 10.00-10.30 COFFEE BREAK 10.30-11.15 Post-anaesthetic and pain management in ruminants K OTTO 11.30-12.15 Physical restraint and sedation of ruminants D HOLOPHERNE 12.30-1.30 LUNCH 1.30-2.15 Anaesthesia of Lamas & Alpagas G TOUZOT 2.30-3.15 Regional & local anaesthesia for ruminants D HOLOPHERNE 3.30-4.00 COFFEE BREAK 4.00-4.45 Pharmacology and protocols for ruminant anaesthesia G TOUZOT AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA-ECVA PARIS 2007, Veterinary Emergency & Anaesthesia, 7-10th March AVA – ECVA Spring Meeting 2007 on Veterinary Emergency & Anesthesia 7 – 10 March 2007, Paris, France Specific anatomo-physiology to consider for ruminants peri-anaesthetic period Klaus A. Otto Institut für Versuchstierkunde und Zentrales Tierlaboratorium, Medizinische Hochschule Hannover, D-30623 Hannover, Germany The suborder “ruminantia” includes members of the family “bovidae” such as cattle (bos taurus), sheep (ovis spp) and goats (capra spp). Members of the family “camelidae” (camelus spp, llama spp, vicugna spp) belong to the suborder “tylopodia” and therefore are not true ruminants.
    [Show full text]
  • Modifications on the Basic Skeletons of Vinblastine and Vincristine
    Molecules 2012, 17, 5893-5914; doi:10.3390/molecules17055893 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Modifications on the Basic Skeletons of Vinblastine and Vincristine Péter Keglevich, László Hazai, György Kalaus and Csaba Szántay * Department of Organic Chemistry and Technology, University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4, Hungary * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +36-1-463-1195; Fax: +36-1-463-3297. Received: 30 March 2012; in revised form: 9 May 2012 / Accepted: 10 May 2012 / Published: 18 May 2012 Abstract: The synthetic investigation of biologically active natural compounds serves two main purposes: (i) the total synthesis of alkaloids and their analogues; (ii) modification of the structures for producing more selective, more effective, or less toxic derivatives. In the chemistry of dimeric Vinca alkaloids enormous efforts have been directed towards synthesizing new derivatives of the antitumor agents vinblastine and vincristine so as to obtain novel compounds with improved therapeutic properties. Keywords: antitumor therapy; vinblastine; vincristine; derivatives 1. Introduction Vinblastine (1) and vincristine (2) are dimeric alkaloids (Figure 1) isolated from the Madagaskar periwinkle plant (Catharantus roseus), exhibit significant cytotoxic activity and are used in the antitumor therapy as antineoplastic agents. In the course of cell proliferation they act as inhibitors during the metaphase of the cell cycle and by binding to the microtubules inhibit the development of the mitotic spindle. In tumor cells these agents inhibit the DNA repair and the RNA synthesis mechanisms, blocking the DNA-dependent RNA polymerase. Molecules 2012, 17 5894 Figure 1.
    [Show full text]
  • Carbamate Pesticides Aldicarb Aldicarb Sulfoxide Aldicarb Sulfone
    Connecticut General Statutes Sec 19a-29a requires the Commissioner of Public Health to annually publish a list setting forth all analytes and matrices for which certification for testing is required. Connecticut ELCP Drinking Water Analytes Revised 05/31/2018 Microbiology Total Coliforms Fecal Coliforms/ E. Coli Carbamate Pesticides Legionella Aldicarb Cryptosporidium Aldicarb Sulfoxide Giardia Aldicarb Sulfone Carbaryl Physicals Carbofuran Turbidity 3-Hydroxycarbofuran pH Methomyl Conductivity Oxamyl (Vydate) Minerals Chlorinated Herbicides Alkalinity, as CaCO3 2,4-D Bromide Dalapon Chloride Dicamba Chlorine, free residual Dinoseb Chlorine, total residual Endothall Fluoride Picloram Hardness, Calcium as Pentachlorophenol CaCO3 Hardness, Total as CaCO3 Silica Chlorinated Pesticides/PCB's Sulfate Aldrin Chlordane (Technical) Nutrients Dieldrin Endrin Ammonia Heptachlor Nitrate Heptachlor Epoxide Nitrite Lindane (gamma-BHC) o-Phosphate Metolachlor Total Phosphorus Methoxychlor PCB's (individual aroclors) Note 1 PCB's (as decachlorobiphenyl) Note 1 Demands Toxaphene TOC Nitrogen-Phosphorus Compounds Alachlor Metals Atrazine Aluminum Butachlor Antimony Diquat Arsenic Glyphosate Barium Metribuzin Beryllium Paraquat Boron Propachlor Cadmium Simazine Calcium Chromium Copper SVOC's Iron Benzo(a)pyrene Lead bis-(2-ethylhexyl)phthalate Magnesium bis-(ethylhexyl)adipate Manganese Hexachlorobenzene Mercury Hexachlorocyclopentadiene Molybdenum Nickel Potassium Miscellaneous Organics Selenium Dibromochloropropane (DBCP) Silver Ethylene Dibromide (EDB)
    [Show full text]
  • Anaesthetic Experience with Paediatric Interventional Cardiology
    320 Occasional Survey Anaesthetic experience with paediatric inter- Shobha Malviya MD, Frederick A. Burrows MD FRCPC, Albert E. Johnston MD FRCPC, Lee N. Benson MD FRCPC ventional cardiology Anaesthetic and sedation techniques, complications and out- In recent years interventional cardiologic procedures have comes were reviewed in 176 children undergoing 184 interven- replaced thoracic and cardiac surgery in the treatment of tional cardiologic procedures. Techniques included sedation certain cardiac anomalies in children. Balloon dilatation only, and ketamine, inhalational or narcotic anaesthesia. is particularly effective in treating pulmonary valve Ketamine infusion was the technique most frequently used. stenosis and is also performed as a nonsurgical alternative Ketamine was associated with a higher incidence of respiratory for patients with aortic valve stenosis, recoaretation of the complications (P < 0.05) than the other techniques. The higher aorta and pulmonary artery stenosis. Insertion of an incidence of hypercarbia (15.6 per cent), which did not affect occlusion device is used to treat patent ductus arteriosus. outcome, may be attributable to the use of supplemental Procedures performed in the cardiac catheterisation sedatives. The incidence of upper airway obstruction (7.8 per suite require a darkened room, allow poor access to the cenO was similar to that of previous studies. Vascular compro- often critically ill patient and present the potential for mise resulted from the procedure in 33 patients, necessitating sudden devastating complications, including rupture of a surgical correction in 16. Cardiac perforation occurred in four cardiac chamber. In addition, interventional procedures cases, causing one death. Pulmonary valve stenosis was most require a steady haemodynamic state before oxygen amenable to balloon dilatation and aortic valve stenosis least saturation and pressures in the various cardiac chambers amenable.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • Muscle Relaxants Physiologic and Pharmacologic Aspects
    K. Fukushima • R. Ochiai (Eds.) Muscle Relaxants Physiologic and Pharmacologic Aspects With 125 Figures Springer Contents Preface V List of Contributors XVII 1. History of Muscle Relaxants Some Early Approaches to Relaxation in the United Kingdom J.P. Payne 3 The Final Steps Leading to the Anesthetic Use of Muscle Relaxants F.F. Foldes 8 History of Muscle Relaxants in Japan K. Iwatsuki 13 2. The Neuromuscular Junctions - Update Mechanisms of Action of Reversal Agents W.C. Bowman 19 Nicotinic Receptors F.G. Standaert 31 The Neuromuscular Junction—Basic Receptor Pharmacology J.A. Jeevendra Martyn 37 Muscle Contraction and Calcium Ion M. Endo 48 3. Current Basic Experimental Works Related to Neuromuscular Blockade in Present and Future Prejunctional Actions of Neuromuscular Blocking Drugs I.G. Marshall, C. Prior, J. Dempster, and L. Tian 51 VII VIII Approaches to Short-Acting Neuromuscular Blocking Agents J.B. Stenlake 62 Effects Other than Relaxation of Non-Depolarizing Muscle Relaxants E.S. Vizi 67 Regulation of Innervation-Related Properties of Cultured Skeletal Muscle Cells by Transmitter and Co-Transmitters R.H. Henning 82 4. Current Clinical Experimental Works Related to Neuromuscular Blockade in Present and Future Where Should Experimental Works Be Conducted? R.D. Miller 93 Muscle Relaxants in the Intensive Care Unit ! J.E. Caldwell 95 New Relaxants in the Operating Room R.K. Mirakhur 105 Kinetic-Dynamic Modelling of Neuromuscular Blockade C. Shanks Ill 5. Basic Aspects of Neuromuscular Junction Physiology of the Neuromuscular Junction W.C. Bowman 117 Properties of <x7-Containing Acetylcholine Receptors and Their Expression in Both Neurons and Muscle D.K.
    [Show full text]
  • Product Monograph Vecuronium Bromide For
    PRODUCT MONOGRAPH PrVECURONIUM BROMIDE FOR INJECTION Non-depolarizing Skeletal Neuromuscular Blocking Agent Pharmaceutical Partners of Canada Inc. Date of Preparation: 45 Vogell Road, Suite 200 January 15, 2008 Richmond Hill, ON L4B 3P6 Control No.: 119276 PRODUCT MONOGRAPH PrVECURONIUM BROMIDE FOR INJECTION Non-depolarizing Skeletal Neuromuscular Blocking Agent THIS DRUG SHOULD BE ADMINISTERED ONLY BY ADEQUATELY TRAINED INDIVIDUALS FAMILIAR WITH ITS ACTIONS, CHARACTERISTICS AND HAZARDS ACTIONS AND CLINICAL PHARMACOLOGY Vecuronium Bromide for Injection is a non-depolarizing neuromuscular blocking agent of intermediate duration possessing all of the characteristic pharmacological actions of this class of drugs (curariform). It acts by competing for cholinergic receptors at the motor end-plate. The antagonism to acetylcholine is inhibited and neuromuscular block reversed by acetylcholinesterase inhibitors such as neostigmine. Vecuronium Bromide for Injection is about 1/3 more potent than pancuronium; the duration of neuromuscular blockade produced by Vecuronium Bromide for Injection is shorter than that of pancuronium at initially equipotent doses. The time to onset of paralysis decreases and the duration of maximum effect increases with increasing Vecuronium Bromide for Injection doses. The use of a peripheral nerve stimulator is of benefit in assessing the degree of muscular relaxation. The ED90 (dose required to produce 90% suppression of the muscle twitch response with balanced anesthesia) has averaged 0.057 mg/kg (0.049 to 0.062 mg/kg in various studies). An initial Vecuronium Bromide for Injection dose of 0.08 to 0.10 mg/kg generally produces first depression of twitch in approximately 1 minute, good or excellent intubation conditions within 2.5 to 3 minutes, and maximum neuromuscular blockade within 3 to 5 minutes of injection in Vecuronium Bromide for Injection, Product Monograph Page 2 of 28 most patients.
    [Show full text]
  • Evaluating the Translational Potential of Progesterone Treatment Following
    Wong et al. BMC Neuroscience 2014, 15:131 http://www.biomedcentral.com/1471-2202/15/131 RESEARCH ARTICLE Open Access Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice Raymond Wong1, Claire L Gibson2*, David A Kendall3 and Philip MW Bath1 Abstract Background: Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results: Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion: Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice.
    [Show full text]
  • The Quest for the Origin and Prevention of Postoperative Myalgia Following Succinylcholine : New Insights in an Old Problem
    The quest for the origin and prevention of postoperative myalgia following succinylcholine : new insights in an old problem Citation for published version (APA): Schreiber, J-U. (2010). The quest for the origin and prevention of postoperative myalgia following succinylcholine : new insights in an old problem. Datawyse / Universitaire Pers Maastricht. https://doi.org/10.26481/dis.20100702js Document status and date: Published: 01/01/2010 DOI: 10.26481/dis.20100702js Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Doxacurium Chloride Injection Abbott Laboratories
    NUROMAX - doxacurium chloride injection Abbott Laboratories ---------- NUROMAX® (doxacurium chloride) Injection This drug should be administered only by adequately trained individuals familiar with its actions, characteristics, and hazards. NOT FOR USE IN NEONATES CONTAINS BENZYL ALCOHOL DESCRIPTION NUROMAX (doxacurium chloride) is a long-acting, nondepolarizing skeletal muscle relaxant for intravenous administration. Doxacurium chloride is [1α,2β(1'S*,2'R*)]-2,2' -[(1,4-dioxo-1,4- butanediyl)bis(oxy-3,1-propanediyl)]bis[1,2,3,4-tetrahydro-6,7,8-trimethoxy-2- methyl-1-[(3,4,5- trimethoxyphenyl)methyl]isoquinolinium] dichloride (meso form). The molecular formula is C56H78CI2N2O16 and the molecular weight is 1106.14. The compound does not partition into the 1- octanol phase of a distilled water/ 1-octanol system, i.e., the n-octanol:water partition coefficient is 0. Doxacurium chloride is a mixture of three trans, trans stereoisomers, a dl pair [(1R,1'R ,2S,2'S ) and (1S,1'S ,2R,2'R )] and a meso form (1R,1'S,2S,2'R). The meso form is illustrated below: NUROMAX Injection is a sterile, nonpyrogenic aqueous solution (pH 3.9 to 5.0) containing doxacurium chloride equivalent to 1 mg/mL doxacurium in Water for Injection. Hydrochloric acid may have been added to adjust pH. NUROMAX Injection contains 0.9% w/v benzyl alcohol. Reference ID: 2867706 CLINICAL PHARMACOLOGY NUROMAX binds competitively to cholinergic receptors on the motor end-plate to antagonize the action of acetylcholine, resulting in a block of neuromuscular transmission. This action is antagonized by acetylcholinesterase inhibitors, such as neostigmine. Pharmacodynamics NUROMAX is approximately 2.5 to 3 times more potent than pancuronium and 10 to 12 times more potent than metocurine.
    [Show full text]