Application of Dimethyl Ether in Compression Ignition Engines
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Application of Dimethyl Ether in Compression Ignition Engines Hansen, Kim Rene; Sorenson, Spencer C; Schramm, Jesper; Sivebæk, Ion Marius Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, K. R., Sorenson, S. C., Schramm, J., & Sivebæk, I. M. (2013). Application of Dimethyl Ether in Compression Ignition Engines. Kgs. Lyngby: Technical University of Denmark (DTU). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Application of Dimethyl Ether in Compression Ignition Engines Kim Rene Hansen October 2012 Application of Dimethyl Ether in Compression Ignition Engines 2012 By Kim Rene Hansen Copyright: Reproduction of this publication in whole or in part must include the customary bibliographic citation, including author attribution, report title, etc. Published Department of Mechanical Engineering, Nils Koppels Allé, Building by: 403, DK-2800 Kgs. Lyngby, Denmark Request re- port from: www.mek.dtu.dk ISSN: [0000-0000] (electronic version) ISBN: [000-00-0000-000-0] (electronic version) ISSN: [0000-0000] (printed version) ISBN: [000-00-0000-000-0] (printed version) Preface This thesis is submitted in partial fulfillment of the requirements for the PhD de- gree at the Technical University of Denmark. The study was carried out at the Department of Mechanical Engineering, Sec- tion of Thermal Energy from September 2007 to October 2012. Supervisor was Associate Professor Jesper Schramm, DTU Mekanik and co-supervisors Pro- fessor Emeritus Spencer Sorenson, DTU Mekanik and Associate Professor Ion Marius Sivebæk, DTU Mekanik. The PhD study was funded by the Technical University of Denmark and includ- ed membership of the research school DCAMM (Danish Center for Applied Mathematics and Mechanics). I would like to thank my supervisors and the other members of the internal combustion engine group at DTU for the invaluable guidance and support throughout the project. Special thanks go to Jakob Duus Dolriis and Christoffer Hansson for the excellent engine design work they carried out while, during their master project, they built the final prototype that became test engine for this study. Thanks also to Jacob Jeppesen who did the calculations that result- ed in a correction to the cylinder volume function for the test engine during his bachelor project. Finally, a thank you to the technical staff at the department who helped manufacture parts for the experimental work. Kim Rene Hansen Lyngby, October 2012 Application of Dimethyl Ether in Compression Ignition Engines Abstract This study has its roots in two separate events at the Department of Mechanical Engineering at DTU. In 1995 the first attempt to operate a diesel engine on di- methyl ether (DME) was successfully concluded. In 2004 the department decid- ed to compete in the vehicle fuel efficiency competition Shell Eco-Marathon. The diesel engine test results from 1995 showed that DME is a superb diesel fuel. DME is easy to ignite by compression ignition and it has a molecular struc- ture that results in near-zero emission of particulates when burned. These are features of a fuel that are highly desirable in a diesel engine. The challenges with DME as a diesel engine fuel are mainly related to poor lubricity and incom- patibility with a range of elastomers commonly used for seals in fuel injection systems. This means that although DME burns well in a diesel engine designing a fuel injection system for DME is challenging. Since then studies have revealed that the injection pressure for DME does not have to be as high as with diesel to achieve satisfactory performance. This opens for a larger range of possibilities when designing injection systems. In the period from 2004 to 2009 the DME engine was perfected for use in the car DTU was racing in the Shell Eco-Marathon. The car won the competition in 2007 and 2009. The concept was to use a direct injected two-stroke engine op- erating with an injection pressure of only 150 bars. A piston pump operating without metal-to-metal contact had been developed to supply that pressure. The elastomer seals that provided the sealing instead of the metal-to-metal contact could do that because of the low injection pressure. The engine developed in this way was based on a 50cc Peugeot two-stroke en- gine. The fuel injector used was a Bosch HDEV originally developed for direct injection of gasoline in automotive engines at up to 200 bars pressure. This in- jector was too large to provide for normal diesel engine operation on an engine of only 50cc. Although DME ignites easily all the fuel was injected before com- bustion started due to the high flow rate. Attempts to find a smaller injector that was also able to deal with the required injection pressure and also DME were not fruitful. Despite the fact that this combustion mode was more a result of ne- cessity than choice the engine efficiency was higher than 30% which is good for an engine of this size. Up until this stage engine design and testing work was done with a focus on efficiency not emissions. The objective of this study was to investigate the combustion mode and the emissions of the engine and to investigate possible improvements. It has been Application of Dimethyl Ether in Compression Ignition Engines shown that the engine operates in a partially premixed mode. It does so with emissions of NOx that are an order of magnitude lower than for traditional auto- motive diesel engines. Emissions of carbon monoxide and unburned hydrocar- bons were quite high though. Experiments with an oxidation catalyst revealed that carbon monoxide could effectively be converted to carbon dioxide but the low exhaust temperature did not allow for full oxidation of the unburned hydro- carbons. Application of Dimethyl Ether in Compression Ignition Engines Resumé Dette studie har sin oprindelse i to separate hændelser på Institut for Mekanisk Teknologi på DTU. I 1995 blev en dieselmotor for første gang kørt på DME, og med succes. I 2004 besluttede instituttet at deltage i Shells konkurrence for brændstoføkonomi: Shell Eco-Marathon. Testresultaterne fra forsøgene i 1995 viste at DME er et fremragende dieselmo- torbrændstof. DME antændes nemt ved kompressionstænding og det har en molekylær struktur, der gør, at der praktisk taget ikke kommer partikler fra for- brænding af DME. Dette er egenskaber, der er meget ønskelige for et dieselmo- torbrændstof. Udfordringerne ved anvendelse af DME i dieselmotorer er den ringe smøreevne og inkompatibilitet med en række af de elastomerer, der typisk anvendes som tætningselementer i brændstofindsprøjtningssystemer. Dette be- tyder, at selvom DME brænder fint i en dieselmotor, så er det en udfordring at designe et pålideligt brændstofindsprøjtningssystem. Siden da har studier vist, at det ikke er nødvendigt at bruge samme høje indsprøjtningstryk, som man gør i dieselmotorer, til DME. Dette åbner en række muligheder, hvad angår design af indsprøjtningssystemet. I perioden 2004-2009 blev DME-motoren optimeret til brug i den bil, som DTU deltog med ved Shell Eco-Marathon. Bilen vandt konkurrencen i 2007 og 2009. Konceptet var baseret på en direkte indsprøjtet totaktsmotor med et indsprøjt- ningstryk på kun 150 bar. En stempelpumpe uden direkte metal-metal kontakt var blevet udviklet til at levere indsprøjtningstrykket. De elastomértætninger, der blev anvendt i stedet for metal-metal kontakt, fungerede pga. det lave indsprøjt- ningstryk. Motoren var baseret på en 50cc Peugeot totaktsmotor. Brændstofindsprøjt- ningsdysen der blev anvendt var en Bosch HDEV 5, som oprindeligt var udviklet til direkte indsprøjtning af benzin i bilmotorer ved up til 200 bar. Denne ind- sprøjtningsdyse var for stor til at opnå en almindelig dieselforbrændingsproces i en motor på kun 50cc. Selvom DME antænder let, så blev alt brændstoffet ind- sprøjtet før forbrændingen påbegyndte, pga. den høje indstrømningsrate. For- søg på at finde en mindre indsprøjtningsdyse, der også kunne klare det nød- vendige indsprøjtningstryk, lykkedes ikke. På trods af, at den resulterende forbrændingsproces mere var et resultat af nødvendighed end design, så var motorvirkningsgraden over 30%, hvilket er godt for en motor af denne størrelse. Indtil dette tidspunkt var alt udviklings- og testarbejde gjort med fokus på virkningsgrad og ikke emissioner. Application of Dimethyl Ether in Compression Ignition Engines Formålet med dette studie er, at undersøge forbrændingsprocessen og emissi- onerne fra motoren, og undersøge mulige forbedringer. Det er påvist, at moto- ren kører med en delvist forblandet forbrændingsproces. Dette resulterer i NOx emissioner der er en størrelsesorden lavere end traditionelle dieselmotorer til bi- ler. Udslippet af kulmonoxid og uforbrændte kulbrinter er ret højt.