A CLOSE-COUPLED CANARD-WING CONFIGURATION by Blair B. Gloss Z

Total Page:16

File Type:pdf, Size:1020Kb

A CLOSE-COUPLED CANARD-WING CONFIGURATION by Blair B. Gloss Z AN NASA TECHNICAL NOTE NASA TN 0-7814 I- N75-1293 2 (NASA-TN-D-7814) THE EFFECT OF CANARD LEADING EDGE SWEEP AND DIHEDRAL ANGLE ON THE LONGITUDINAL AND LATERAL AERODYNAMIC Unclas CHARACTERISTIC OF A CLOSE-COUPLED (NASA) 7 p HC $4.25 CSCL 01C H1/05 05495 THE EFFECT OF CANARD LEADING-EDGE SWEEP AND DIHEDRAL ANGLE ON THE LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF A CLOSE-COUPLED CANARD-WING CONFIGURATION by Blair B. Gloss Z- Langley Research Center ' Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION * WASHINGTON, D. C. * DECEMBER 1974 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-7814 4. Title and Subtitle 5. Report Date THE EFFECT OF CANARD LEADING-EDGE SWEEP December 1974 AND DIHEDRAL ANGLE ON THE LONGITUDINAL AND 6. Performing Organization Code LATERAL AERODYNAMIC CHARACTERISTICS OF A -CLOSE-COUPLED CANARD-WING CONFIGURATION 7. Author(s) 8. Performing Organization Report No. Blair B. Gloss L-9788 10. Work Unit No. 9. Performing Organization Name and Address 505-11-21-02 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract highly maneuver- A generalized wind-tunnel model, with canard and wing planforms typical of able aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 160. How- results in an increase ever, for angles of attack greater than 160, an increase in the canard sweep in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing. For the configurations with the canard in the wing chord plane, increasing the canard dihedral For the con- -18.60 to 18.60 increased the maximum lift coefficient of the configuration. angle from coefficient was figurations with the canard above the wing chord plane, the highest maximum lift developed when the canard had no dihedral. linear the configuration with the canards above the wing chord plane produced more In general, with the pitching-moment curves throughout the angle-of-attack range than did the configuration canard in the wing chord plane. The theoretical data would seem to indicate that, when in the pres- ence of each other, the canard and the wing generate vortex lift. For the canard in the wing chord plane, the effect of canard dihedral on the total C1P (partial derivative of rolling moment with respect to sideslip), for the configuration with the wing on, is small up to an angle of attack of approximately 80. From 80 to approximately 200, the effect of canard dihedral on the total Clp is as expected (the higher the dihedral angle, the more negative the Cl). However, above 220, the configuration with the highest canard dihedral becomes the most unstable. The instability could be associated with canard characteristics, wing interference characteristics, or the wing-alone characteristics. The canard-wing configuration, with a 600 swept canard, produced large unstable lateral-stability breaks. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Canard wing Unclassified - Unlimited High angle of attack Canard dihedral Canard leading-edge sweep STAR Category 02 22. Price* 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages Unclassified Unclassified 68 $4.25 For sale by the National Technical Information Service, Springfield, Virginia 22151 THE EFFECT OF CANARD LEADING-EDGE SWEEP AND DIHEDRAL ANGLE ON THE LONGITUDINAL AND LATERAL AERODYNAMIC CHARACTERISTICS OF A CLOSE-COUPLED CANARD-WING CONFIGURATION By Blair B. Gloss Langley Research Center SUMMARY A generalized wind-tunnel model, with canard and wing planforms typical of highly maneuverable aircraft, was tested in the Langley high-speed 7- by 10-foot tunnel at a Mach number of 0.30. The test was conducted in order to determine the effects of canard sweep and canard dihedral on canard-wing interference at high angles of attack. In general, the effect of canard sweep on lift is small up to an angle of attack of 160 However, for angles of attack greater than 160, an increase in the canard sweep results in an increase in lift developed by the canard when the canard is above or in the wing chord plane. This increased lift results in a lift increase for the total configuration for the canard above the wing chord plane. For the canard in the wing chord plane, the increased canard lift is partially lost by increased interference on the wing. For the configurations with the canard in the wing chord plane, increasing the canard dihedral angle from -18.60 to 18.60 increased the maximum lift coefficient of the config- uration. For the configurations with the canard above the wing chord plane, the highest maximum lift coefficient was developed when the canard had no dihedral. In general, the configuration with the canards above the wing chord plane produced more linear pitching-moment curves throughout the angle-of-attack range than did the configuration with the canard in the wing chord plane. The theoretical data would seem to indicate that, when in the presence of each other, the canard and the wing generate vor- tex lift. For the canard in the wing chord plane, the effect of canard dihedral on the total Cl, (partial derivative of rolling moment with respect to sideslip), for the configuration with the wing on, is small .p to an angle of attack of approximately 80. From 80 to approximately 200, the effect of canard dihedral on the total C1P is as expected (the higher the dihedral angle, the more negative the Cg). However, above 220, the con- figuration with the highest canard dihedral becomes the most unstable. The instability could be associated with canard characteristics, wing interference characteristics, or the wing-alone characteristics. The canard-wing configuration, with a 600 swept canard, produced large unstable lateral-stability breaks. INTRODUCTION Past investigations (refs. 1 to 9) have indicated that the use of a canard on maneuvering-aircraft configurations can offer several attractive features, such as increased trimmed-lift capability (refs. 1 and 2) and reduced trimmed drag (refs. 3 and 4). In addition, the geometric characteristics of the close-coupled canard-wing configurations offer the potential for an improved longitudinal progression of cross-sectional area for operational configurations. This improved progression could result in reduced wave drag at low supersonic speeds. The canard not only is useful for longitudinal control, but it can also be used to provide direct lift and direct side-force control. In view of these potential benefits in maneuvering-aircraft technology offered by the canard configurations, the National Aeronautics and Space Administration is con- ducting a study with a generalized wind-tunnel model which incorporates two balances. This model allows a separation of the canard and the wing contribution from the total forces and moments. The present investigation was conducted in the Langley high-speed 7- by 10-foot tunnel in order to determine the effect of canard leading-edge sweep and canard dihedral angle on canard-wing interference effects at high angles of attack. The tests were con- ducted at a Mach number of 0.30 for a Reynolds number of 1.56 x 106, based on a mean geometric chord , and at angles of attack from approximately -40 to 400 with -50, 00, and 50 sideslip. SYMBOLS The International System of Units, with the U.S. Customary Units presented in parentheses, is used for the physical quantities found in this paper. Measurements and calculations were made in U.S. Customary Units. The data presented in this report are referred to the stability-axis system, with the exception of the side-force and normal- force data, which are referred to the body-axis system. The moment reference point was taken to be at the fuselage station 59.14 cm (23.28 in.). A aspect ratio (2.5), b 2 /S b wing span, 50.8 cm (20 in.) 2 b C canard span, 34.50 cm (13.58 in.) CD drag coefficient, Drag qS Lift CL lift coefficient, qS Cy side-force coefficient, Side force qS moment C 1 rolling-moment coefficient, RollingqSb Cm pitching-moment coefficient, Pitching moment qSc Cn yawing-moment coefficient, Yawing moment qSb E wing mean geometric chord, 23.32 cm (9.18 in.) S- longitudinal distance from model nose to canard leading edge M free-stream Mach number q free-stream dynamic pressure, N/m 2 (lb/ft2 ) S reference area of wing with leading and trailing edges extended to plane of symmetry, 1032.26 cm 2 (160.00 in2 ) 2 2 S C canard area (exposed), 288.71 cm (44.75 in ) z vertical distance between the chord planes of the canard and wing, positive up a angle of attack, deg P angle of sideslip, deg AC leading-edge sweep angle of canard, deg Aw leading-edge sweep angle of wing, deg canard dihedral angle, positive tip up, deg 3 Subscripts: C load measured on canard balance M load measured on main balance p potential v vortex P partial derivative of the quantity subscripted with respect to , per deg DESCRIPTION OF MODEL A sketch of the general research model showing the canards and the wing studied is presented in figure 1.
Recommended publications
  • Flying Wing Concept for Medium Size Airplane
    ICAS 2002 CONGRESS FLYING WING CONCEPT FOR MEDIUM SIZE AIRPLANE Tjoetjoek Eko Pambagjo*, Kazuhiro Nakahashi†, Kisa Matsushima‡ Department of Aeronautics and Space Engineering Tohoku University, Japan Keywords: blended-wing-body, inverse design Abstract The flying wing is regarded as an alternate This paper describes a study on an alternate configuration to reduce drag and structural configuration for medium size airplane. weight. Since flying wing possesses no fuselage Blended-Wing-Body concept, which basically is it may have smaller wetted area than the a flying wing configuration, is applied to conventional airplane. In the conventional airplane for up to 224 passengers. airplane the primary function of the wing is to An aerodynamic design tools system is produce the lift force. In the flying wing proposed to realize such configuration. The configuration the wing has to carry the payload design tools comprise of Takanashi’s inverse and provides the necessary stability and control method, constrained target pressure as well as produce the lift. The fuselage has to specification method and RAPID method. The create lift without much penalty on the drag. At study shows that the combination of those three the same time the fuselage has to keep the cabin design methods works well. size comfortable for passengers. In the past years several flying wings have been designed and flown successfully. The 1 Introduction Horten, Northrop bombers and AVRO are The trend of airplane concept changes among of those examples. However the from time to time. Speed, size and range are application of the flying wing concepts were so among of the design parameters.
    [Show full text]
  • CANARD.WING LIFT INTERFERENCE RELATED to MANEUVERING AIRCRAFT at SUBSONIC SPEEDS by Blair B
    https://ntrs.nasa.gov/search.jsp?R=19740003706 2020-03-23T12:22:11+00:00Z NASA TECHNICAL NASA TM X-2897 MEMORANDUM CO CN| I X CANARD.WING LIFT INTERFERENCE RELATED TO MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS by Blair B. Gloss and Linwood W. McKmney Langley Research Center Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1973 1.. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2897 4. Title and Subtitle 5. Report Date CANARD-WING LIFT INTERFERENCE RELATED TO December 1973 MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. L-9096 Blair B. Gloss and Linwood W. McKinney 10. Work Unit No. 9. Performing Organization Name and Address • 760-67-01-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington , D . C . 20546 15. Supplementary Notes 16. Abstract An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter con- figurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations.
    [Show full text]
  • Evolving the Oblique Wing
    NASA AERONAUTICS BOOK SERIES A I 3 A 1 A 0 2 H D IS R T A O W RY T A Bruce I. Larrimer MANUSCRIP . Bruce I. Larrimer Library of Congress Cataloging-in-Publication Data Larrimer, Bruce I. Thinking obliquely : Robert T. Jones, the Oblique Wing, NASA's AD-1 Demonstrator, and its legacy / Bruce I. Larrimer. pages cm Includes bibliographical references. 1. Oblique wing airplanes--Research--United States--History--20th century. 2. Research aircraft--United States--History--20th century. 3. United States. National Aeronautics and Space Administration-- History--20th century. 4. Jones, Robert T. (Robert Thomas), 1910- 1999. I. Title. TL673.O23L37 2013 629.134'32--dc23 2013004084 Copyright © 2013 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks. Introduction v Chapter 1: American Genius: R.T. Jones’s Path to the Oblique Wing .......... ....1 Chapter 2: Evolving the Oblique Wing ............................................................ 41 Chapter 3: Design and Fabrication of the AD-1 Research Aircraft ................75 Chapter 4: Flight Testing and Evaluation of the AD-1 ................................... 101 Chapter 5: Beyond the AD-1: The F-8 Oblique Wing Research Aircraft ....... 143 Chapter 6: Subsequent Oblique-Wing Plans and Proposals ....................... 183 Appendices Appendix 1: Physical Characteristics of the Ames-Dryden AD-1 OWRA 215 Appendix 2: Detailed Description of the Ames-Dryden AD-1 OWRA 217 Appendix 3: Flight Log Summary for the Ames-Dryden AD-1 OWRA 221 Acknowledgments 230 Selected Bibliography 231 About the Author 247 Index 249 iii This time-lapse photograph shows three of the various sweep positions that the AD-1's unique oblique wing could assume.
    [Show full text]
  • Aircraft Design Final Design Review
    Group 7 AIRCRAFT DESIGN FINAL DESIGN REVIEW March 20, 2013 Sagun Bajracharya Roger Francis Tim Tianhang Teng Guang Wei Yu Abstract This document summarizes the work that group 7 has done insofar regarding the design of a radio-controlled plane with respect to the requirements that were put forward by the course (AER406, 2013). This report follows the same format as the presentation where we inform the reader where the current design is, how the group progressed towards that design and how we started. This report also summarizes a number of the important parameters required for a conceptual design like the cargo type & amount,Wing aspect ratio, Optimum Airfoil lift(CL), Thrust to weight ratio & Takeoff distance. In addition, this report presents the plane's wing and tail design, stability analysis and a mass breakdown. The report finally ends with pictures of the current design. 2 Contents 1 Design Overview6 2 Required Parameters6 3 Trade Studies6 3.1 Wing Design....................................... 7 3.2 Wing Configuration................................... 8 3.3 Fuselage Design..................................... 8 3.4 Tail Design ....................................... 9 3.5 Overall Selection .................................... 10 3.6 Parameters from Reference Designs.......................... 11 4 Flight Score Optimization 11 4.1 Cargo Selection..................................... 11 4.2 Propeller Selection ................................... 12 4.3 Flight Parameter Selection............................... 13 5 Wing Design 16 5.1
    [Show full text]
  • Performance Enhancement by Wing Sweep for High-Speed Dynamic Soaring
    aerospace Article Performance Enhancement by Wing Sweep for High-Speed Dynamic Soaring Gottfried Sachs *, Benedikt Grüter and Haichao Hong Department of Aerospace and Geodesy, Institute of Flight System Dynamics, Technical University of Munich, Boltzmannstraße 15, 85748 Munich, Germany; [email protected] (B.G.); [email protected] (H.H.) * Correspondence: [email protected] Abstract: Dynamic soaring is a flight mode that uniquely enables high speeds without an engine. This is possible in a horizontal shear wind that comprises a thin layer and a large wind speed. It is shown that the speeds reachable by modern gliders approach the upper subsonic Mach number region where compressibility effects become significant, with the result that the compressibility-related drag rise yields a limitation for the achievable maximum speed. To overcome this limitation, wing sweep is considered an appropriate means. The effect of wing sweep on the relevant aerodynamic characteristics for glider type wings is addressed. A 3-degrees-of-freedom dynamics model and an energy-based model of the vehicle are developed in order to solve the maximum-speed problem with regard to the effect of the compressibility-related drag rise. Analytic solutions are derived so that generally valid results are achieved concerning the effects of wing sweep on the speed performance. Thus, it is shown that the maximum speed achievable with swept wing configurations can be increased. The improvement is small for sweep angles up to around 15 deg and shows a progressive increase thereafter. As a result, wing sweep has potential for enhancing the maximum- speed performance in high-speed dynamic soaring.
    [Show full text]
  • Conceptual Design of a Strut-Braced Wing Configuration
    22 June2017 Aviation on Sustainable UTIAS NationalColloquium Bombardier Aerospace Engineering,Product Development Advanced Design Specialist Engineering Graham Potter Configuration Strut-Braceda Wing Conceptual Design of PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. Environmentally Focused Aircraft Study Environmentally Focused 2 § § § Aircraft requirements: Technology assumption: Environmentally Focused Aircraft (EFA) study objective: § § § EIS Based on existing Bombardier products Consistent with EIS 2030-2035 by evaluating alternative long-rangeSignificantly business jet reduce and environmental commercial impact aircraft configurations (emissions, local air quality and community noise) Entry-Into-Service Business Jet Commercial Aircraft PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. The History of the Strut-Braced Wing 3 Hurel-Dubois HD.31 Hurel-Dubois Shorts 360 Hurel-Dubois HD.31 Cessna Caravan PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. Recent Research Efforts Research Recent 4 Boeing/NASA Boeing/NASA Virginia Tech Virginia ONERA PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. WhyStrut-Braced a Configuration? 5 § § § § configuration equivalent conventional burn savings compared to Other studies suggest 5-10% fuel induced drag ratios with large reductionsin to Allows optimization higher aspect given aspect ratio allows reducedwingweightata Strut-braced configuration wing and drag compromiseweight between wing Optimum aspect ratio wing is a Wing Weight Aspect Ratio PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. WhyStrut-Braced a Configuration? 6 § Start witha geometryconventional wing PRIVATE AND CONFIDENTIAL © Bombardier Inc. or its subsidiaries. All rights reserved. WhyStrut-Braced a Configuration? 7 § § Add astrut Start witha geometryconventional wing WING WEIGHT FUEL BURN PROFILE DRAG PRIVATE AND CONFIDENTIAL © Bombardier Inc.
    [Show full text]
  • Research on Combination of Swing Wing with Canard and Tail Used in Fighter Aircraft
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019 Research on Combination of Swing Wing with Canard and Tail used in Fighter Aircraft Praveen babu, Swathi P Shetty, Kavya G Achar, Steve JohnsonLobo, Lokesh K S, Jagadeesh Abstract: The present work discloses the new design of a To balance the aircraft, either fuel must be pumped to move fighter aircraft. Better performance of a fighter in the combat as the centre of gravity or the tail must provide a tremendous well in its ground activities is the main vision of our work. It is down load[1]. concentrating on the aircraft short distance take off and landing, Variable sweep aircraft typically exhibit a greater stalling controlling, as well as different maneuverings of the aircraft. Many fighter aircraft are having its own working rearward shift in aerodynamic center from subsonic to parameters and configurations. Every aircraft shown its own supersonic speed than fixed wing plane form. The first characteristics in flight like maneuverings, stalling etc.The major variable sweep design X-5 research vehicle minimized problem of them is prohibiting some of these characteristics in aerodynamic travel by employing a rail carriage system to some angle of attack. So to control we have implemented some provide forward translation to the wing at the swept back modifications. To achieve all these characteristics, we have position. The XF101-1 aircraft, the second variable sweep selected the combination of swing wing with canard and tail configuration. By using this technology we can increase the design, had a forward translation capability that was flight ability to its maximum.
    [Show full text]
  • Airplane Design(Aerodynamic) Prof. EG Tulapurkara Chapter-1
    Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 Chapter 1 Lecture 2 Introduction - 2 Topics 1.5 Classification of airplanes according to configuration 1.5.1 Classification of airplanes based on wing configuration 1.5.2 Classification of airplanes based on fuselage 1.5.3 Classification of airplanes based on horizontal stabilizer 1.5.4 Classification of airplanes based on number of engines and their location 1.6 Factors affecting the configuration 1.6.1 Aerodynamic considerations – drag, lift and interference 1.6.2 Low structural weight 1.6.3 Layout peculiarities 1.6.4 Manufacturing processes 1.6.5 Cost and operational economics - Direct operating cost (DOC) and Indirect operating cost (IOC) 1.6.6 Interaction of various factors 1.7 Brief historical background 1.7.1 Early developments 1.5 Classification of airplanes according to configuration This classification is based on the following features of the configuration. a) Shape, number and position of wing. b) Type of fuselage. c) Location of horizontal tail. d) Location and number of engines. Dept. of Aerospace Engg., Indian Institute of Technology, Madras 1 Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 The different types of configurations are shown in Fig.1.2. As an exercise the student is advised to study, at this stage, various types of airplanes from Jane's all the world aircraft (Ref.1.21). Fig.1.2 Types of airplanes(cont.) Dept. of Aerospace Engg., Indian Institute of Technology, Madras 2 Airplane design(Aerodynamic) Prof. E.G. Tulapurkara Chapter-1 Fig.1.2 Types of airplanes 1.5.1 Classification of airplanes based on wing configuration Early airplanes had two or more wings e.g.
    [Show full text]
  • Its Advantages Included Clean Wing Airflow Without Disruption by Nacelles Or Pylons and Decreased Cabin Noise
    Design of an innovative stall recovery device J.A. Stoop FO4873 Lund University Sweden, Delft University of Technology The Netherlands J.L. de Kroes Hilversum, The Netherlands John Stoop graduated in 1976 as an aerospace engineer at Delft University of Technology and did his PhD on the issue of 'Safety in the Design Process'. He is a part-time Associate Professor at the Faculty of Aerospace Engineering of the Delft University of Technology and is a guest professor at Lund University Sweden. Stoop has completed courses in accident investigation in the Netherlands, USA and Canada. Stoop is Affiliated Member of ISASI, and has been actively involved in accident investigations in the road and has played a role as safety analyst in maritime, railway and aviation accidents. Abstract Stall has been an inherent hazard since the beginning of flying. Despite a very successful stall mitigation strategy and a wide variety of solutions, stall as a phenomenon still exists. This contribution explores the nature and dynamics of stall as a loss of pitch control phenomenon and the remedies that have been developed over time. This contribution proposes the introduction of a stall shield device. A multi-actor collaborative approach is suggested for the development of such a device, including the technological, control and simulation and operational aspects of the design by involving designers, pilots and investigators in its development. The introduction of the stall shield concept may serve as an example of how serendipity through accident investigation may disclose critical systemic and knowledge deficiencies in aircraft stability and control, leading to systems resilience by innovative solutions.
    [Show full text]
  • Box Wing Fundamentals – an Aircraft Design Perspective
    Deutscher Luft- und Raumfahrtkongress 2011 DocumentID: 241353 BOX WING FUNDAMENTALS – AN AIRCRAFT DESIGN PERSPECTIVE D. Schiktanz, D. Scholz Hamburg University of Applied Sciences Aero – Aircraft Design and Systems Group Berliner Tor 9, 20099 Hamburg, Germany Abstract A systematic and general investigation about box wing aircraft is conducted, including aerodynamic and performance characteristics. The design of a promising medium range box wing aircraft based on the Airbus A320 taken as reference aircraft is performed. The design is taken through the general steps in aircraft preliminary design. The fuel consumption of the final aircraft is 9 % lower than that of the reference aircraft. The aircraft layout is well balanced regarding the position of the center of gravity and the travel of the center of gravity is minimized. This is necessary due to the aircraft’s particular characteristics concerning static longitudinal stability and controllability. The low wing tank capacity requires an additional fuselage tank. Because of its high span efficiency the aircraft has a glide ratio of 20,4. Its wing is about twice as heavy as the reference wing. This is partly compensated by a lighter fuselage. 1. INTRODUCTION This paper was conducted within the research project Airport 2030 [3]. The designed medium range box wing 1.1. Motivation aircraft is supposed to provide answers on how to reduce emissions in the airport environment and how to reduce costs for airlines with the help of an unconventional and A promising configuration for future aircraft is the box wing more efficient aircraft. configuration (see FIG. 1) which assures savings in fuel consumption compared to conventional aircraft.
    [Show full text]
  • Progress in Inverted Joined Wing Scaled Demonstrator Programme
    Progress in Inverted Joined Wing Scaled Demonstrator Programme Cezary Galinski Institute of Aviation Deputy Director for Science Al. Krakowska 110/114, 02-256 Warszawa, Poland, [email protected] Jarosław Hajduk (Airforce Institute of Technology), Adam Dziubinski (Institute of Aviation), Adam Sieradzki (Institute of Aviation), Mateusz Lis (Institute of Aviation), Grzegorz Krysztofiak (Institute of Aviation) ABSTRACT Efficiency is crucial for an airplane to reduce both costs of operations and emissions of air pollutants. There are several airplane concepts that potentially allow to increase the efficiency, which were not investigated thoroughly enough. Inverted join wing configuration, where upper wing is located in front of the lower one is an example of such a concept. Therefore, the project described in this paper is dedicated to fill this gap. CFD analyses, wind tunnel tests and flight tests of scaled demonstrator have been undertaken to perform this task. This paper presents a summary of results achieved so far with particular attention put on CFD and flight test results. 1 INTRODUCTION Joined wing configuration is considered as a candidate for future airplanes. It is an unconventional airplane configuration consisting of two lifting surfaces similar in terms of area and span. One of them is located at the top or above the fuselage, whereas the second is located at the bottom. Moreover one of lifting surfaces is attached in front of airplane Centre of Gravity, whereas the second is attached significantly behind it. Both lifting surfaces join each other either directly or with application of wing tip plates (box wing). For the first time it was proposed by Prandtl in [1].
    [Show full text]
  • Investigation and Design of a C-Wing Passenger Aircraft
    Project Department of Automotive and Aeronautical Engineering Investigation and Design of a C-Wing Passenger Aircraft Author: Karan Bikkannavar Supervisor: Prof. Dr.-Ing. Dieter Scholz, MSME Delivery date: 02.03.2016 Abstract A novel nonplanar wing concept,‘C-Wing‘ design is studied and applied to a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. In-house preliminary sizing method which employs optimization algorithm is utilized and current Airbus A-320 aircraft is used as a reference to evaluate design parameters and to investigate C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to extended wing span (airport limit), reduction in mission fuel fraction and 7% mass savings were obtained for aircraft with C-Wing configuration. In the latter section, effect of variations of height to span ratio (h/b) of C-Wing on induced drag factor k, is formulated from a vortex lattice method and literature based equations. These equations primarily estimate Oswald factor e (span efficiency factor) for non planar configurations. The results from these equations were promising and in good proximity to the vortex based method. Finally costing methods used by Association of Auropean Airlines (AEA) is applied to the existing A320 aircraft and C-Wing configuration indicating difference of 6% reduction in Direct Operating Costs (DOC) for the novel concept. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits. © This work is protected by copyright The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA http://creativecommons.org/licenses/by-nc-sa/4.0 Any further request may be directed to: Prof.
    [Show full text]