Control of a Swept Wing Tailless Aircraft Through Wing Morphing

Total Page:16

File Type:pdf, Size:1020Kb

Control of a Swept Wing Tailless Aircraft Through Wing Morphing Graduate Theses, Dissertations, and Problem Reports 2007 Control of a swept wing tailless aircraft through wing morphing Richard W. Guiler West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Guiler, Richard W., "Control of a swept wing tailless aircraft through wing morphing" (2007). Graduate Theses, Dissertations, and Problem Reports. 2779. https://researchrepository.wvu.edu/etd/2779 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. CONTROL OF A SWEPT WING TAILLESS AIRCRAFT THROUGH WING MORPHING by Richard W. Guiler Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering Approved by Wade Huebsch, PhD., Committee Chairperson John Loth, PhD. Gary Morris, PhD. John Kuhlman, PhD. Jens Madsen, PhD. Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2007 Keywords: Morphing Aircraft Structures, Tailless Aircraft, Horten, Wing Twist, Blended Wing Body and Aircraft Controls Copyright 2007 Richard W. Guiler i Abstract CONTROL OF A SWEPT WING TAILLESS AIRCRAFT THROUGH WING MORPHING by Richard W. Guiler Inspired by flight in nature, work done by Lippisch, the Hortens, and Northrop offered insight to achieving the efficiency of bird flight with swept-wing tailless aircraft. Tailless designs must incorporate aerodynamic compromises for control, which have inhibited potential advantages. A morphing mechanism, capable of changing the twist of wing and that can also provide pitch, roll and yaw control for a tailless swept wing aircraft is the first step to a series of morphing techniques, which will lead to more fluid, bird-like flight. This research focuses on investigating the design of a morphing wing to improve the flight characteristics of swept wing Horten type tailless aircraft. Free flight demonstrators, wind tunnel flow visualization, wind-tunnel force and moment data along with CFD studies have been used to evaluate the stability, control and efficiency of a morphing swept wing tailless aircraft. A wing morphing mechanism for the control of a swept wing tailless aircraft has been developed. This new control technique was experimentally and numerically compared to an existing elevon equipped tailless aircraft and has shown the potential for significant improvement in efficiency. The feasibility of this mechanism was also validated through flight testing of a flight weight version. In the process of comparing the Horten type elevon equipped aircraft and the morphing model, formal wind tunnel verification of wingtip induced thrust, found in Horten (Bell Shaped Lift distribution) type swept wing tailless aircraft was documented. A more complete physical understanding of the highly complex flow generated in the control region of the morphing tailless aircraft has been developed. CFD models indicate the possibility of the presence of a Leading Edge Vortex (LEV) on the control section morphing wing when the tip is twisted between +3.5 degrees and +7 degrees. The presence of this LEV causes a reduction of drag while lift is increased. Similar LEVs have been documented in use by birds and insects. ii Dedication The author wishes to thank my family for all the support and patience, which made it possible to continue this exciting research. Acknowledgments The author wishes to express my sincere gratitude to my committee for all the help in order to complete this work. I would also like to thank Dr. Karl Nickel and Gunilde Nickel for their support, advice and encouragement. iii Table of Contents Abstract.............................................................................................................................. ii Dedication .........................................................................................................................iii Acknowledgments ............................................................................................................iii Table of Contents ............................................................................................................. iv List of Figures................................................................................................................... vi List of Tables ................................................................................................................... xii Introduction....................................................................................................................... 1 Chapter 1 Swept-wing Tailless Aircraft ........................................................................ 3 1. Early Swept-wing Tailless Aircraft ......................................................................... 3 2. Alexander Lippisch................................................................................................... 5 3. John K. Northrop.................................................................................................... 13 4. Reimar and Walter Horten.................................................................................... 16 5. Recent Swept Wing Tailless Aircraft Developments ........................................... 26 6. Karl Nickel............................................................................................................... 31 7. Lockheed Martin..................................................................................................... 32 Chapter 2 Wing Morphing............................................................................................ 34 1. Early Aircraft Morphing Developments............................................................... 34 2. NASA Mission Adaptive Wing (MAW) ................................................................ 34 3. NASA Active Aero-elastic Wing (AAW)............................................................... 35 4. NASA Biologically Inspired Aerodynamic Geometries....................................... 36 5. DARPA / Lockheed MAS....................................................................................... 37 6. University of Florida............................................................................................... 39 7. Current Morphing Component Technology ........................................................ 40 Chapter 3 Research........................................................................................................ 47 1. Overview .................................................................................................................. 47 2. Objectives................................................................................................................. 47 3. Parallel Work .......................................................................................................... 48 4. Geometry / Aerodynamics...................................................................................... 49 5. Morphing mechanism development ...................................................................... 50 6. Wind Tunnel Preparation ...................................................................................... 63 7. Data Acquisition System......................................................................................... 63 iv 8. Force and Moment Balance System ...................................................................... 64 9. Wind Tunnel Test Case .......................................................................................... 67 10. Wind Tunnel Testing ............................................................................................ 72 11. Computational Fluid Dynamic studies................................................................ 84 12. Flight testing of the adaptive washout morphing mechanism ........................ 105 13. Error analysis...................................................................................................... 115 14. Discussion of Results........................................................................................... 121 Conclusions.................................................................................................................... 131 Bibliography .................................................................................................................. 133 Appendix A – Force Balance Data .............................................................................. 137 Appendix B – Wind Tunnel Data ................................................................................ 140 Curriculum Vitae.......................................................................................................... 146 v List of Figures Figure 1– Span-wise lift distributions, Bell shaped
Recommended publications
  • Flying Wing Concept for Medium Size Airplane
    ICAS 2002 CONGRESS FLYING WING CONCEPT FOR MEDIUM SIZE AIRPLANE Tjoetjoek Eko Pambagjo*, Kazuhiro Nakahashi†, Kisa Matsushima‡ Department of Aeronautics and Space Engineering Tohoku University, Japan Keywords: blended-wing-body, inverse design Abstract The flying wing is regarded as an alternate This paper describes a study on an alternate configuration to reduce drag and structural configuration for medium size airplane. weight. Since flying wing possesses no fuselage Blended-Wing-Body concept, which basically is it may have smaller wetted area than the a flying wing configuration, is applied to conventional airplane. In the conventional airplane for up to 224 passengers. airplane the primary function of the wing is to An aerodynamic design tools system is produce the lift force. In the flying wing proposed to realize such configuration. The configuration the wing has to carry the payload design tools comprise of Takanashi’s inverse and provides the necessary stability and control method, constrained target pressure as well as produce the lift. The fuselage has to specification method and RAPID method. The create lift without much penalty on the drag. At study shows that the combination of those three the same time the fuselage has to keep the cabin design methods works well. size comfortable for passengers. In the past years several flying wings have been designed and flown successfully. The 1 Introduction Horten, Northrop bombers and AVRO are The trend of airplane concept changes among of those examples. However the from time to time. Speed, size and range are application of the flying wing concepts were so among of the design parameters.
    [Show full text]
  • CANARD.WING LIFT INTERFERENCE RELATED to MANEUVERING AIRCRAFT at SUBSONIC SPEEDS by Blair B
    https://ntrs.nasa.gov/search.jsp?R=19740003706 2020-03-23T12:22:11+00:00Z NASA TECHNICAL NASA TM X-2897 MEMORANDUM CO CN| I X CANARD.WING LIFT INTERFERENCE RELATED TO MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS by Blair B. Gloss and Linwood W. McKmney Langley Research Center Hampton, Va. 23665 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • DECEMBER 1973 1.. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TM X-2897 4. Title and Subtitle 5. Report Date CANARD-WING LIFT INTERFERENCE RELATED TO December 1973 MANEUVERING AIRCRAFT AT SUBSONIC SPEEDS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. L-9096 Blair B. Gloss and Linwood W. McKinney 10. Work Unit No. 9. Performing Organization Name and Address • 760-67-01-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23665 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington , D . C . 20546 15. Supplementary Notes 16. Abstract An investigation was conducted at Mach numbers of 0.7 and 0.9 to determine the lift interference effect of canard location on wing planforms typical of maneuvering fighter con- figurations. The canard had an exposed area of 16.0 percent of the wing reference area and was located in the plane of the wing or in a position 18.5 percent of the wing mean geometric chord above the wing plane. In addition, the canard could be located at two longitudinal stations.
    [Show full text]
  • The General Idea Behind Editing in Narrative Film Is the Coordination of One Shot with Another in Order to Create a Coherent, Artistically Pleasing, Meaningful Whole
    Chapter 4: Editing Film 125: The Textbook © Lynne Lerych The general idea behind editing in narrative film is the coordination of one shot with another in order to create a coherent, artistically pleasing, meaningful whole. The system of editing employed in narrative film is called continuity editing – its purpose is to create and provide efficient, functional transitions. Sounds simple enough, right?1 Yeah, no. It’s not really that simple. These three desired qualities of narrative film editing – coherence, artistry, and meaning – are not easy to achieve, especially when you consider what the film editor begins with. The typical shooting phase of a typical two-hour narrative feature film lasts about eight weeks. During that time, the cinematography team may record anywhere from 20 or 30 hours of film on the relatively low end – up to the 240 hours of film that James Cameron and his cinematographer, Russell Carpenter, shot for Titanic – which eventually weighed in at 3 hours and 14 minutes by the time it reached theatres. Most filmmakers will shoot somewhere in between these extremes. No matter how you look at it, though, the editor knows from the outset that in all likelihood less than ten percent of the film shot will make its way into the final product. As if the sheer weight of the available footage weren’t enough, there is the reality that most scenes in feature films are shot out of sequence – in other words, they are typically shot in neither the chronological order of the story nor the temporal order of the film.
    [Show full text]
  • AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
    AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft.
    [Show full text]
  • Fly-By-Wire - Wikipedia, the Free Encyclopedia 11-8-20 下午5:33 Fly-By-Wire from Wikipedia, the Free Encyclopedia
    Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Fly-by-wire From Wikipedia, the free encyclopedia Fly-by-wire (FBW) is a system that replaces the Fly-by-wire conventional manual flight controls of an aircraft with an electronic interface. The movements of flight controls are converted to electronic signals transmitted by wires (hence the fly-by-wire term), and flight control computers determine how to move the actuators at each control surface to provide the ordered response. The fly-by-wire system also allows automatic signals sent by the aircraft's computers to perform functions without the pilot's input, as in systems that automatically help stabilize the aircraft.[1] Contents Green colored flight control wiring of a test aircraft 1 Development 1.1 Basic operation 1.1.1 Command 1.1.2 Automatic Stability Systems 1.2 Safety and redundancy 1.3 Weight saving 1.4 History 2 Analog systems 3 Digital systems 3.1 Applications 3.2 Legislation 3.3 Redundancy 3.4 Airbus/Boeing 4 Engine digital control 5 Further developments 5.1 Fly-by-optics 5.2 Power-by-wire 5.3 Fly-by-wireless 5.4 Intelligent Flight Control System 6 See also 7 References 8 External links Development http://en.wikipedia.org/wiki/Fly-by-wire Page 1 of 9 Fly-by-wire - Wikipedia, the free encyclopedia 11-8-20 下午5:33 Mechanical and hydro-mechanical flight control systems are relatively heavy and require careful routing of flight control cables through the aircraft by systems of pulleys, cranks, tension cables and hydraulic pipes.
    [Show full text]
  • Artifacts and Aircraft
    International Journal of Business, Humanities and Technology Vol. 5, No. 2; April 2015 The Ancients: Artifacts and Aircraft Susan Kelly Archer, EdD Embry-Riddle Aeronautical University Department of Doctoral Studies College of Aviation Daytona Beach, Florida USA Abstract Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. In 1996, Lumir Janku wrote about a set of artifacts, discovered in Peru and determined to be Pre-Columbian, that can be interpreted as models of delta- winged fliers. The design of the Peruvian artifacts has been interpreted in multiple ways by a variety of professionals. The delta wing was also incorporated into the design of civilian aircraft during the 20th Century. Modern delta-winged aircraft were used successfully in both military and civilian applications for more than 40 years. It is interesting to read about the possibility that this aeronautical design may have originated millennia earlier with a culture that did not leave written records to explain its artifacts crafted in gold. Keywords: aviation history, delta wing, Pre-Columbian artifacts Throughout literature and other art forms, certain themes appear repeatedly. The same might be said for engineering designs, specifically the design of aerospace vehicles. Man’s fascination with how birds fly can be linked to the ancient legends of Daedalus or the winged Egyptian gods, and then more recently to John Damien’s attempt to fly with wings made from chicken feathers (Brady, 2000) or Otto Lillienthal’s essays linking the physiology of birds to the design of early gliders (Lillienthal, 2001).
    [Show full text]
  • Aircraft Collection
    A, AIR & SPA ID SE CE MU REP SEU INT M AIRCRAFT COLLECTION From the Avenger torpedo bomber, a stalwart from Intrepid’s World War II service, to the A-12, the spy plane from the Cold War, this collection reflects some of the GREATEST ACHIEVEMENTS IN MILITARY AVIATION. Photo: Liam Marshall TABLE OF CONTENTS Bombers / Attack Fighters Multirole Helicopters Reconnaissance / Surveillance Trainers OV-101 Enterprise Concorde Aircraft Restoration Hangar Photo: Liam Marshall BOMBERS/ATTACK The basic mission of the aircraft carrier is to project the U.S. Navy’s military strength far beyond our shores. These warships are primarily deployed to deter aggression and protect American strategic interests. Should deterrence fail, the carrier’s bombers and attack aircraft engage in vital operations to support other forces. The collection includes the 1940-designed Grumman TBM Avenger of World War II. Also on display is the Douglas A-1 Skyraider, a true workhorse of the 1950s and ‘60s, as well as the Douglas A-4 Skyhawk and Grumman A-6 Intruder, stalwarts of the Vietnam War. Photo: Collection of the Intrepid Sea, Air & Space Museum GRUMMAN / EASTERNGRUMMAN AIRCRAFT AVENGER TBM-3E GRUMMAN/EASTERN AIRCRAFT TBM-3E AVENGER TORPEDO BOMBER First flown in 1941 and introduced operationally in June 1942, the Avenger became the U.S. Navy’s standard torpedo bomber throughout World War II, with more than 9,836 constructed. Originally built as the TBF by Grumman Aircraft Engineering Corporation, they were affectionately nicknamed “Turkeys” for their somewhat ungainly appearance. Bomber Torpedo In 1943 Grumman was tasked to build the F6F Hellcat fighter for the Navy.
    [Show full text]
  • 04 Delta Wings
    ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment.
    [Show full text]
  • 3. Master the Camera
    mini filmmaking guides production 3. MASTER THE CAMERA To access our full set of Into Film DEVELOPMENT (3 guides) mini filmmaking guides visit intofilm.org PRE-PRODUCTION (4 guides) PRODUCTION (5 guides) 1. LIGHT A FILM SET 2. GET SET UP 3. MASTER THE CAMERA 4. RECORD SOUND 5. STAY SAFE AND OBSERVE SET ETIQUETTE POST-PRODUCTION (2 guides) EXHIBITION AND DISTRIBUTION (2 guides) PRODUCTION MASTER THE CAMERA Master the camera (camera shots, angles and movements) Top Tip Before you begin making your film, have a play with your camera: try to film something! A simple, silent (no dialogue) scene where somebody walks into the shot, does something and then leaves is perfect. Once you’ve shot your first film, watch it. What do you like/dislike about it? Save this first attempt. We’ll be asking you to return to it later. (If you have already done this and saved your films, you don’t need to do this again.) Professional filmmakers divide scenes into shots. They set up their camera and frame the first shot, film the action and then stop recording. This process is repeated for each new shot until the scene is completed. The clips are then put together in the edit to make one continuous scene. Whatever equipment you work with, if you use professional techniques, you can produce quality films that look cinematic. The table below gives a description of the main shots, angles and movements used by professional filmmakers. An explanation of the effects they create and the information they can give the audience is also included.
    [Show full text]
  • Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft
    DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Actuator Saturation Analysis of a Fly-By-Wire Control System for a Delta-Canard Aircraft ERIK LJUDÉN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Author Erik Ljudén <[email protected]> School of Engineering Sciences KTH Royal Institute of Technology Place Linköping, Sweden Saab Examiner Ulf Ringertz Stockholm KTH Royal Institute of Technology Supervisor Peter Jason Linköping Saab Abstract Actuator saturation is a well studied subject regarding control theory. However, little research exist regarding aircraft behavior during actuator saturation. This paper aims to identify flight mechanical parameters that can be useful when analyzing actuator saturation. The studied aircraft is an unstable delta-canard aircraft. By varying the aircraft’s center-of- gravity and applying a square wave input in pitch, saturated actuators have been found and investigated closer using moment coefficients as well as other flight mechanical parameters. The studied flight mechanical parameters has proven to be highly relevant when analyzing actuator saturation, and a simple connection between saturated actuators and moment coefficients has been found. One can for example look for sudden changes in the moment coefficients during saturated actuators in order to find potentially dangerous flight cases. In addition, the studied parameters can be used for robustness analysis, but needs to be further investigated. Lastly, the studied pitch square wave input shows no risk of aircraft departure with saturated elevons during flight, provided non-saturated canards, and that the free-stream velocity is high enough to be flyable. i Sammanfattning Styrdonsmättning är ett välstuderat ämne inom kontrollteorin.
    [Show full text]
  • Liste Der Flugbücher TVB, 05.2005
    Name FB- Einheit Info Flüge Anzahl der Flüge Nummer gesperrt gesamt Grasmann, Kurt 1 - 1 2 Seiten Zusammenstellung DLV 795 Flug 1 am 00.06.1937 - Flug 103 am 00.03.1939 (Abschrift) Johannisthal, DLV Völkenrode, E- Flug 1 am 19.12.1938 - Flug 692 am 28.12.1944 Stelle Rechlin, 5 Seiten Auflistung der geflogenen Flugzeuge Günther, Erwin 1 - 2 A/B 7, Segelflugausb.-stelle 12/13, 2073 1. Flug 1 am 21.08.1941 - Flug 1950 am 16.05.1944 A/B 112, LKS 4, A/B 110, Segelflu- 2. Flug 3753 am 28.01.1945 - Flug 3783 am 24.04.1945 gausb.-stelle 12/13 (nur Segelflüge), 3. Flug 1 am 21.07.1943 - Flug 93 am 18.09.1943 FFS-Schein Weng, Georg 1 - 3 FAS Perleberg, 3./ErgFAGr, AGr (F) 192 Flug 1 am 17.10.1942 - Flug 192 am 08.05.1945 33, Ju 88, Ju 188 Kindler 1 - 4 DVL Adlershof, DVL Braunschweig, 517 Flug 1 am 24.04.1934 - Flug 517 am 13.03.1942 usw., Conrad 1 - 5 DLV Würzburg, DLV List, E-Stelle 4269 1. Flug 1 am 21.08.1928 - Flug 2052 am 27.05.1933 Rechlin, Fluglehrer Ritter von Greim, 2. Flug 2053 am 28.05.1933 - Flug 3067 am 08.06.1934 Erpr. d.Lw. Travemünde, Katapult- 3. Flug 3765 am 04.06.1934 - Flug 4512 am 01.09.1936 starts, Ar 199 4. Flug 1 am 02.09.1936 - Flug 395 am 27.01.1940 Doll, Erich 1 – 6 FFS A/B 33, FFS C 16, BFS 31, Ca.
    [Show full text]
  • Stabilizer PLUS 7-Channel Receiver Essential Instructions
    Lemon RX Stabilizer PLUS Receiver – Essential Instructions v1.1 Lemon RX Stabilizer PLUS 7-Channel Receiver Essential Instructions Contents Introducing the Lemon StabPLUS ............................................................................................................ 2 Functions ........................................................................................................................................................ 2 Transmitter Requirements .............................................................................................................................. 2 Servos and Power Sources .............................................................................................................................. 3 Setting up the StabPLUS ......................................................................................................................... 4 Installation ...................................................................................................................................................... 4 Binding ............................................................................................................................................................ 5 Setting Failsafe ................................................................................................................................................ 5 Test Flying .............................................................................................................................................. 6 Preparing
    [Show full text]