B-172192 Analysis of Changes in the Estimated Cost of the Skylab Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Administration
https://ntrs.nasa.gov/search.jsp?R=19700024651 2020-03-23T18:20:34+00:00Z TO THE CONGRESSOF THE UNITEDSTATES : Transmitted herewith is the Twenty-first Semiannual Repol* of the National Aeronautics and Space Administration. Twen~-first SEMIANNUAL REPORT TO CONGRESS JANUARY 1 - JUNE 30, 1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 Editors: G. B. DeGennaro, H. H. Milton, W. E. Boardman, Office of Public Affairs; Art work: A. Jordan, T. L. Lindsey, Office of Organiza- tion and Management. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $1.25 THE PRESIDENT May 27,1970 The White House I submit this Twenty-First Semiannual Report of the National Aeronautics and Space Aldministration to you for transmitttal to Congress in accordance with section 206(a) of the National Aero- nautics and Space Act of 1958. It reports on aotivities which took place betiween January 1 and June 30, 1969. During this time, the Nation's space program moved forward on schedule. ApolIo 9 and 10 demonstrated the ability of ;the man- ned Lunar Module to operate in earth and lunar orbit and its 'eadi- ness to attempt the lunar landing. Unmanned observatory and ex- plorer class satellites carried on scientific studies of the regions surrounding the Earth, the Moon, and the Sun; a Biosatellite oarwing complex biological science experiment was orbited; and sophisticated weather satellites and advanced commercial com- munications spacecraft became operational. Advanced research projects expanded knowledge of space flighk and spacecraft engi- neering as well as of aeronautics. -
Progress Report on Apollo Program
PROGRESS REPORT ON APOLLO PROGRAM Michael Collins, LCol. USAF (M) Astronaut NASA-MANNED SPACECRAFT CENTER It is a great pleasure to be here today and to greet you hardy suMvors of the pool party. I will do my best to avoid loud noises and bright colors during my status report. Since the last SETP Symposium, the Apollo Program has been quite busy in a number of different areas. (Figure 1) My problem is to sift through this information and to talk only about those things of most interest to you. First, to review briefly our hardware, we are talking about two different spacecraft and two different boosters. (Figure 2) The Command Module is that part of the stack COLLINS which makes the complete round trip to the moon. Attached to it is the Service Module, containing expendables and a 20,000 pound thrust engine for maneuverability. The Lunar Module will be carried on later flights and is the landing vehicle and active rendezvous partner. The uprated Saturn I can put the Command and Service Modules into earth orbit; the Saturn V is required when the Lunar Module is added. Since the last symposium, we have flown the Command and Service Modules twice and the Lunar Module once, all unmanned. Apollo 4, the first Saturn V flight, was launched in November 1967. (Figure 3) The Saturn V did a beautiful, i.e. nominal, job of putting the spacecraft into earth parking orbit. After a coast period, the third stage (S-IVB by McDonnell Douglas) was ignited a second time, achieving a highly elliptical orbit. -
Nasa Advisory Council Human Exploration and Operations
NASA ADVISORY COUNCIL HUMAN EXPLORATION AND OPERATIONS COMMITTEE NASA Headquarters Washington, DC January 13-14, 2021 MEETING REPORT _____________________________________________________________ N. Wayne Hale, Chair ____________________________________________________________ Bette Siegel, Executive Secretary Table of Contents Call to Order 3 Commercial Crew Program 5 Public Comments 8 Artemis Program 9 SMD Artemis CLPS Activities 11 Moon to Mars Update 12 Solar System and Beyond 12 HERMES Instrument Update Artemis III SDT Update Advancing Biological and Physical Sciences Through Lunar Exploration 14 SMD Mars Science Update 14 Artemis Accords 15 Planetary Protection Activities 15 Discussion/Findings and Recommendations 16 Appendix A- Attendees Appendix B- HEOC Membership Appendix C- Presentations Appendix D- Agenda Appendix E- Chat Transcript Prepared by Joan M. Zimmermann Zantech IT, Inc. 2 January 13, 2021 Call to order and welcome Dr. Bette Siegel, Executive Secretary of the Human Exploration and Operations Committee (HEOC), called the meeting to order, and provided details of the Federal Advisory Committee Act (FACA), which provides governance rules for the meeting. She introduced Mr. N. Wayne Hale, Chair of the HEOC. Mr. Hale noted to the public that this particular HEO meeting counts as the last meeting of 2020, and the next scheduled meeting in March/April will be the first meeting of 2021. Mr. Hale welcomed three new members, Ms. Lynn Cline, Mr. David Thompson, and Mr. Kwatsi Alibaruho. The present meeting is focused on an update on the HEO areas, and a joint meeting with the NASA Advisory Council (NAC) Science Committee. Mr. Hale asked if NAC Chair, General Lester Lyles, who was attending the meeting virtually, had any remarks to proffer. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
PDF Download
August 2008 | Volume VII, Issue IV www.boeing.com/frontiers The Weapons Program team at Boeing is reinventing itself to better meet emerging warfighter needs. August 2008 Volume VII, Issue IV BOEING FRONTIERS ON THE COVER: Mike Dour performs final-assembly tasks on a Small Diameter Bomb in St. Charles, Mo. RICHARD RAU PHOTO COVER STORY RICHARD RAU PHOTO BULLSEYE | 12 Otis Stith uses ergonomic handling equipment to move a Joint Direct Attack Munition tailkit from the St. Charles, Mo., assembly line to the packaging area. He’s a member of the newly formed Weapons Programs organization, which is reinventing itself to better meet warfighter needs and deliver even greater capabilities to U.S. and allied forces. FEATURE STORY | 50 Rich history, strong future Turkey reveres its storied past as it moves confidently into a technologically capable, global future. With 65 percent of its population age 34 and under, the country is working to develop a tech-savvy work force. That’s important to Boeing, which is undertaking a cross-enterprise approach to doing business in this market—the home to customers in both the commercial and defense segments. BOEING FRONTIERS AUGUST 2008 3 Contents BOEING FRONTIERS A clean handoff | 22 In July, the first P-8A Poseidon achieved “factory complete” status as workers at the Boeing Commercial Airplanes factory in Renton, Wash., rolled it off the moving assembly line. Now, Integrated Defense Systems teammates will com- plete systems integration and functional checks. A load of assistance | 27 Boeing Commercial Airplanes’ structures engineer- ing team was spread thin supporting several development programs. -
Apollo Spacecraft
APOLLO NEWS REFERENCE APOLLO SPACECRAFT The Apollo spacecraft comprises the lunar occupies the right flight station. The astronauts module, the command module, theservice module, transfer to the ascent stage, through the docking the spacecraft-lunar module adapter, and the tunne l, after the LM has docked with the CM and launch escape system. The five parts, 82 feet tall both have attained lunar orbit. The ascent stage when assembled, are carried atop the launch comprises three major areas: crew compartment, vehicle. midsection, and aft equipment bay. The cabin, comprising the crew compartment and midsection, After the launch escape system and the launch has an overa ll volume of 235 cubic feet. vehicle have been jettisoned, the three modu les remain to form the basic spacecraft. The command module carries the three astronauts to and from Because the LM is operated in either the weight lunar orbit. The service modu le contains the pro lessness of space or in lunar gravity, the cabin pulsion system that propels the spacecraft during contains harness- like restraint equipment rather the trans lunar and transearth flights. The lunar than the foldable couches provided in the CM. The module carries two astronauts, the Commander restraints al low the astronauts sufficient freedom and the Lunar Module Pilot, to and from the of movement to operate al l LM controls while in a moon, and serves as the base of operations during re lativelyupright position. the lunar stay. LUNAR MODULE The lunar module wil l be operated in the vacuum of space; there was no need, therefore,for it to have the aerodynamic symmetry of the com· mand module. -
And Ground-Based Observations of Pulsating Aurora
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2010 Space- and ground-based observations of pulsating aurora Sarah Jones University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Jones, Sarah, "Space- and ground-based observations of pulsating aurora" (2010). Doctoral Dissertations. 597. https://scholars.unh.edu/dissertation/597 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. SPACE- AND GROUND-BASED OBSERVATIONS OF PULSATING AURORA BY SARAH JONES B.A. in Physics, Dartmouth College 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics May, 2010 UMI Number: 3470104 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3470104 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 This dissertation has been examined and approved. -
NTSB Report AAL1572 Bradley Airport, 1995
PB96-910405 > NTSB/AAR-96/05 DCA96MA008 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT COLLISION WITH TREES ON FINAL APPROACH AMERICAN AIRLINES FLIGHT 1572 McDONNELL DOUGLAS MD-83, N566AA EAST GRANBY, CONNECTICUT NOVEMBER 12, 1995 . 6638B m *%L’bww*&*+ ‘. ‘. - .,, -. --3 The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews. Information about available publications may be obtained by contacting: National Transportation Safety Board Public Inquiries Section, RE-51 490 L'Enfant Plaza, S.W. Washington, D.C. 20594 (202)314-6551 (800)877-6799 Safety Board publications may be purchased, by individual copy or by subscription, from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 (703)487-4600 NTSB/AAR-96/05 PB96-910405 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT COLLISION WITH TREES ON FINAL APPROACH AMERICAN AIRLINES FLIGHT 1572 McDONNELL DOUGLAS MD-83, N566AA EAST GRANBY, CONNECTICUT NOVEMBER 12, 1995 Adopted: November 13, 1996 Notation 6638B Abstract: This report explains the accident involving American Airlines flight 1572, an MD-83 airplane, which was substantially damaged when it impacted trees in East Granby, Connecticut, while on approach to runway 15 at Bradley International Airport, Windsor Locks, Connecticut, on November 12, 1995. -
PSAD-81-2 Support Service Contracting at Johnson Space
BY THEU.S. GENERAL ACCOUNTli’JG OFFICE Report To The Administrator, National Aeronautics And Space Administration S@pportService Contracting At Johnson Space Center Needs Strengthening T National Aeronautics and S ace Administration Sl about $175 million annual Py on support service Cl at Johnson Space Center. GAO tested the way si of these contracts are administered and found --a contractor was working without approved llllllllllllllll113606 work orders, --Government-furnished equipment was unac- counted for, --questionable reimbursements occurred for con- tractor costs, I --contract funds increased before the need was justified, I --contracting officers were unaware of their re- sponsibilitres and unfamiliar with contract terms, and I --some contracting officers had a general attitude that small dollar value contracts are not worthy of adequate attention. I ‘/A0 believes overreliance on cost-type contracts which quire greater administration efforts than fixed-price )ntracts contributes to these contracting weaknesses recommends that the National Aeronautics and ace Administration take corrective actions. mp81s2 OCTOBER 21,1900 + Request for copies of GAO reports should be sent to: U.S. General Accounting Office Document Handling and Information Services Facility P.O. Box 6015 Gaithersburg, Md. 20760 Telephone (202) 275-6241 The first five copies of individual reports are free of charge. Additional copies of bound audit reports are $3.25 each. Additional copies of unbound report (i.e., letter reports) and most other publications are $1.00 each. There will be a 25% discount on all orders for 100 or more copies mailed to a single address. Sales orders must be prepaid on a cash, check, or money order basis. -
Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell
Apollo 11 Astronaut Neil Armstrong Broadcast from the Moon (July 21, 1969) Added to the National Registry: 2004 Essay by Cary O’Dell “One small step for…” Though no American has stepped onto the surface of the moon since 1972, the exiting of the Earth’s atmosphere today is almost commonplace. Once covered live over all TV and radio networks, increasingly US space launches have been relegated to a fleeting mention on the nightly news, if mentioned at all. But there was a time when leaving the planet got the full attention it deserved. Certainly it did in July of 1969 when an American man, Neil Armstrong, became the first human being to ever step foot on the moon’s surface. The pictures he took and the reports he sent back to Earth stopped the world in its tracks, especially his eloquent opening salvo which became as famous and as known to most citizens as any words ever spoken. The mid-1969 mission of NASA’s Apollo 11 mission became the defining moment of the US- USSR “Space Race” usually dated as the period between 1957 and 1975 when the world’s two superpowers were competing to top each other in technological advances and scientific knowledge (and bragging rights) related to, truly, the “final frontier.” There were three astronauts on the Apollo 11 spacecraft, the US’s fifth manned spaced mission, and the third lunar mission of the Apollo program. They were: Neil Armstrong, Edwin “Buzz” Aldrin, and Michael Collins. The trio was launched from Kennedy Space Center in Florida on July 16, 1969 at 1:32pm. -
Enceladus, Moon of Saturn
National Aeronautics and and Space Space Administration Administration Enceladus, Moon of Saturn www.nasa.gov Enceladus (pronounced en-SELL-ah-dus) is an icy moon of Saturn with remarkable activity near its south pole. Covered in water ice that reflects sunlight like freshly fallen snow, Enceladus reflects almost 100 percent of the sunlight that strikes it. Because the moon reflects so much sunlight, the surface temperature is extremely cold, about –330 degrees F (–201 degrees C). The surface of Enceladus displays fissures, plains, corrugated terrain and a variety of other features. Enceladus may be heated by a tidal mechanism similar to that which provides the heat for volca- An artist’s concept of Saturn’s rings and some of the icy moons. The ring particles are composed primarily of water ice and range in size from microns to tens of meters. In 2004, the Cassini spacecraft passed through the gap between the F and G rings to begin orbiting Saturn. noes on Jupiter’s moon Io. A dramatic plume of jets sprays water ice and gas out from the interior at ring material, coating itself continually in a mantle Space Agency. The Jet Propulsion Laboratory, a many locations along the famed “tiger stripes” at of fresh, white ice. division of the California Institute of Technology, the south pole. Cassini mission data have provided manages the mission for NASA. evidence for at least 100 distinct geysers erupting Saturn’s Rings For images and information about the Cassini on Enceladus. All of this activity, plus clues hidden Saturn’s rings form an enormous, complex struc- mission, visit — http://saturn.jpl.nasa.gov/ in the moon’s gravity, indicates that the moon’s ture. -
Earthrise- Contents and Chapter 1
EARTHRISE: HOW MAN FIRST SAW THE EARTH Contents 1. Earthrise, seen for the first time by human eyes 2. Apollo 8: from the Moon to the Earth 3. A Short History of the Whole Earth 4. From Landscape to Planet 5. Blue Marble 6. An Astronaut’s View of Earth 7. From Cold War to Open Skies 8. From Spaceship Earth to Mother Earth 9. Gaia 10. The Discovery of the Earth 1. Earthrise, seen for the first time by human eyes On Christmas Eve 1968 three American astronauts were in orbit around the Moon: Frank Borman, James Lovell, and Bill Anders. The crew of Apollo 8 had been declared by the United Nations to be the ‘envoys of mankind in outer space’; they were also its eyes.1 They were already the first people to leave Earth orbit, the first to set eyes on the whole Earth, and the first to see the dark side of the Moon, but the most powerful experience still awaited them. For three orbits they gazed down on the lunar surface through their capsule’s tiny windows as they carried out the checks and observations prescribed for almost every minute of this tightly-planned mission. On the fourth orbit, as they began to emerge from the far side of the Moon, something happened. They were still out of radio contact with the Earth, but the on- board voice recorder captured their excitement. Borman: Oh my God! Look at that picture over there! Here’s the Earth coming up. Wow, that is pretty! Anders: Hey, don’t take that, it’s not scheduled.