Introduction to Orbifolds Francisco C. Caramello Jr. arXiv:1909.08699v3 [math.DG] 19 Mar 2021 Author’s professional address: Instituto de Matem´aticae Estat´ıstica da Universidade de S˜aoPaulo (IME-USP), Rua do Mat˜ao1010, 05508-090, S˜aoPaulo - SP, Brazil. Email:
[email protected]. The author was supported by grant #2018/14980-0, S˜aoPaulo Research Foundation (FAPESP). “Manifolds are fantastic spaces. It’s a pity that there aren’t more of them.” — nLab page on generalized smooth spaces. Preface Orbifolds, first defined by I. Satake in [45] as V -manifolds, are amongst the simplest generalizations of manifolds that include singularities. They are topological spaces locally modeled on quotients of Rn by a finite group action, and appear naturally in many areas of mathematics and physics, such as algebraic geometry, differential geometry and string theory. There are many different ways to approach orbifolds, for example as Lie groupoids (see Remark 2.1.3), length spaces (see Remark 4.2.1), Deligne–Mumford stacks (see, e.g., [34]), etc. Here will adopt the more elementary, classical approach via local charts and atlases, following mostly [1], [11], [17], [18], [32], [38] and [49], which can be used for further reading on the subject. Manifolds are very well-behaved spaces. While this is comfortable on the level of the objects, it forces the category of manifolds and smooth maps to have poor algebraic properties (e.g. it is not closed under limits, co-limits, quotients...), hence the pursuit of generalizations. Orbifolds arise in this context—together with the more general Chen spaces [16], diffeological spaces [31], differentiable staks [6], Fr¨olicher spaces [23] and many others (see also [48])—providing a category which at least behaves better with respect to quotients while retaining some proximity with the realm and language of manifolds.