TOPOLOGY 004C Contents 1. Introduction 1 2. Basic Notions 2 3. Hausdorff Spaces 2 4. Separated Maps 3 5. Bases 3 6. Submersive M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EPIREFLECTIONS WHICH ARE COMPLETIONS by G
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES G. C. L. BRUMMER E. GIULI H. HERRLICH Epireflections which are completions Cahiers de topologie et géométrie différentielle catégoriques, tome 33, no 1 (1992), p. 71-93 <http://www.numdam.org/item?id=CTGDC_1992__33_1_71_0> © Andrée C. Ehresmann et les auteurs, 1992, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE VOL. XXXIII-1 (1992) ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES EPIREFLECTIONS WHICH ARE COMPLETIONS by G. C. L. BRUMMER, E. GIULI and H. HERRLICH We dedicate this paper to the memory of Siegfried Grässer Resume. Nous axiomatisons la situation ou tout ob jet d’une categorie X a un complete et ou tout plongement dense dans un objet complet quelconque est une r6flexion dans la sous- categorie pleine des objets complets. On dit alors que X admet une sous-categorie S-fermement E-r6flexive. Ici, S est une classe de morphismes de X ayant des propri6t6s analogues aux plongements, et la classe E represente la densite appro- pri6e. Pour le cas E = EpiX nous relions cette notion avec celles de fermeture S-absolue, de S-saturation, et de (E n S)- injectivit6; nous en donnons plusieurs caract6risations, en par- ticulier la pr6servation des S-morphismes; et nous considerons beaucoup d’exemples topologiques et alg6briques. -
1.1.5 Hausdorff Spaces
1. Preliminaries Proof. Let xn n N be a sequence of points in X convergent to a point x X { } 2 2 and let U (f(x)) in Y . It is clear from Definition 1.1.32 and Definition 1.1.5 1 2F that f − (U) (x). Since xn n N converges to x,thereexistsN N s.t. 1 2F { } 2 2 xn f − (U) for all n N.Thenf(xn) U for all n N. Hence, f(xn) n N 2 ≥ 2 ≥ { } 2 converges to f(x). 1.1.5 Hausdor↵spaces Definition 1.1.40. A topological space X is said to be Hausdor↵ (or sepa- rated) if any two distinct points of X have neighbourhoods without common points; or equivalently if: (T2) two distinct points always lie in disjoint open sets. In literature, the Hausdor↵space are often called T2-spaces and the axiom (T2) is said to be the separation axiom. Proposition 1.1.41. In a Hausdor↵space the intersection of all closed neigh- bourhoods of a point contains the point alone. Hence, the singletons are closed. Proof. Let us fix a point x X,whereX is a Hausdor↵space. Denote 2 by C the intersection of all closed neighbourhoods of x. Suppose that there exists y C with y = x. By definition of Hausdor↵space, there exist a 2 6 neighbourhood U(x) of x and a neighbourhood V (y) of y s.t. U(x) V (y)= . \ ; Therefore, y/U(x) because otherwise any neighbourhood of y (in particular 2 V (y)) should have non-empty intersection with U(x). -
A Surface of Maximal Canonical Degree 11
A SURFACE OF MAXIMAL CANONICAL DEGREE SAI-KEE YEUNG Abstract. It is known since the 70's from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a min- imal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface. 1. Introduction 1.1. Let M be a minimal surface of general type. Assume that the space of canonical 0 0 sections H (M; KM ) of M is non-trivial. Let N = dimCH (M; KM ) = pg, where pg is the geometric genus. The canonical map is defined to be in general a rational N−1 map ΦKM : M 99K P . For a surface, this is the most natural rational mapping to study if it is non-trivial. Assume that ΦKM is generically finite with degree d. It is well-known from the work of Beauville [B], that d := deg ΦKM 6 36: We call such degree the canonical degree of the surface, and regard it 0 if the canonical mapping does not exist or is not generically finite. The following open problem is an immediate consequence of the work of [B] and is implicitly hinted there. Problem What is the optimal canonical degree of a minimal surface of general type? Is there a minimal surface of general type with canonical degree 36? Though the problem is natural and well-known, the answer remains elusive since the 70's. -
The Non-Hausdorff Number of a Topological Space
THE NON-HAUSDORFF NUMBER OF A TOPOLOGICAL SPACE IVAN S. GOTCHEV Abstract. We call a non-empty subset A of a topological space X finitely non-Hausdorff if for every non-empty finite subset F of A and every family fUx : x 2 F g of open neighborhoods Ux of x 2 F , \fUx : x 2 F g 6= ; and we define the non-Hausdorff number nh(X) of X as follows: nh(X) := 1 + supfjAj : A is a finitely non-Hausdorff subset of Xg. Using this new cardinal function we show that the following three inequalities are true for every topological space X d(X) (i) jXj ≤ 22 · nh(X); 2d(X) (ii) w(X) ≤ 2(2 ·nh(X)); (iii) jXj ≤ d(X)χ(X) · nh(X) and (iv) jXj ≤ nh(X)χ(X)L(X) is true for every T1-topological space X, where d(X) is the density, w(X) is the weight, χ(X) is the character and L(X) is the Lindel¨ofdegree of the space X. The first three inequalities extend to the class of all topological spaces d(X) Pospiˇsil'sinequalities that for every Hausdorff space X, jXj ≤ 22 , 2d(X) w(X) ≤ 22 and jXj ≤ d(X)χ(X). The fourth inequality generalizes 0 to the class of all T1-spaces Arhangel ski˘ı’s inequality that for every Hausdorff space X, jXj ≤ 2χ(X)L(X). It is still an open question if 0 Arhangel ski˘ı’sinequality is true for all T1-spaces. It follows from (iv) that the answer of this question is in the afirmative for all T1-spaces with nh(X) not greater than the cardianilty of the continuum. -
Arxiv:1708.06494V1 [Math.AG] 22 Aug 2017 Proof
CLOSED POINTS ON SCHEMES JUSTIN CHEN Abstract. This brief note gives a survey on results relating to existence of closed points on schemes, including an elementary topological characterization of the schemes with (at least one) closed point. X Let X be a topological space. For a subset S ⊆ X, let S = S denote the closure of S in X. Recall that a topological space is sober if every irreducible closed subset has a unique generic point. The following is well-known: Proposition 1. Let X be a Noetherian sober topological space, and x ∈ X. Then {x} contains a closed point of X. Proof. If {x} = {x} then x is a closed point. Otherwise there exists x1 ∈ {x}\{x}, so {x} ⊇ {x1}. If x1 is not a closed point, then continuing in this way gives a descending chain of closed subsets {x} ⊇ {x1} ⊇ {x2} ⊇ ... which stabilizes to a closed subset Y since X is Noetherian. Then Y is the closure of any of its points, i.e. every point of Y is generic, so Y is irreducible. Since X is sober, Y is a singleton consisting of a closed point. Since schemes are sober, this shows in particular that any scheme whose under- lying topological space is Noetherian (e.g. any Noetherian scheme) has a closed point. In general, it is of basic importance to know that a scheme has closed points (or not). For instance, recall that every affine scheme has a closed point (indeed, this is equivalent to the axiom of choice). In this direction, one can give a simple topological characterization of the schemes with closed points. -
3. Closed Sets, Closures, and Density
3. Closed sets, closures, and density 1 Motivation Up to this point, all we have done is define what topologies are, define a way of comparing two topologies, define a method for more easily specifying a topology (as a collection of sets generated by a basis), and investigated some simple properties of bases. At this point, we will start introducing some more interesting definitions and phenomena one might encounter in a topological space, starting with the notions of closed sets and closures. Thinking back to some of the motivational concepts from the first lecture, this section will start us on the road to exploring what it means for two sets to be \close" to one another, or what it means for a point to be \close" to a set. We will draw heavily on our intuition about n convergent sequences in R when discussing the basic definitions in this section, and so we begin by recalling that definition from calculus/analysis. 1 n Definition 1.1. A sequence fxngn=1 is said to converge to a point x 2 R if for every > 0 there is a number N 2 N such that xn 2 B(x) for all n > N. 1 Remark 1.2. It is common to refer to the portion of a sequence fxngn=1 after some index 1 N|that is, the sequence fxngn=N+1|as a tail of the sequence. In this language, one would phrase the above definition as \for every > 0 there is a tail of the sequence inside B(x)." n Given what we have established about the topological space Rusual and its standard basis of -balls, we can see that this is equivalent to saying that there is a tail of the sequence inside any open set containing x; this is because the collection of -balls forms a basis for the usual topology, and thus given any open set U containing x there is an such that x 2 B(x) ⊆ U. -
A Zariski Topology for Modules
A Zariski Topology for Modules∗ Jawad Abuhlail† Department of Mathematics and Statistics King Fahd University of Petroleum & Minerals [email protected] October 18, 2018 Abstract Given a duo module M over an associative (not necessarily commutative) ring R, a Zariski topology is defined on the spectrum Specfp(M) of fully prime R-submodules of M. We investigate, in particular, the interplay between the properties of this space and the algebraic properties of the module under consideration. 1 Introduction The interplay between the properties of a given ring and the topological properties of the Zariski topology defined on its prime spectrum has been studied intensively in the literature (e.g. [LY2006, ST2010, ZTW2006]). On the other hand, many papers considered the so called top modules, i.e. modules whose spectrum of prime submodules attains a Zariski topology (e.g. [Lu1984, Lu1999, MMS1997, MMS1998, Zah2006-a, Zha2006-b]). arXiv:1007.3149v1 [math.RA] 19 Jul 2010 On the other hand, different notions of primeness for modules were introduced and in- vestigated in the literature (e.g. [Dau1978, Wis1996, RRRF-AS2002, RRW2005, Wij2006, Abu2006, WW2009]). In this paper, we consider a notions that was not dealt with, from the topological point of view, so far. Given a duo module M over an associative ring R, we introduce and topologize the spectrum of fully prime R-submodules of M. Motivated by results on the Zariski topology on the spectrum of prime ideals of a commutative ring (e.g. [Bou1998, AM1969]), we investigate the interplay between the topological properties of the obtained space and the module under consideration. -
Bitopological Duality for Distributive Lattices and Heyting Algebras
BITOPOLOGICAL DUALITY FOR DISTRIBUTIVE LATTICES AND HEYTING ALGEBRAS GURAM BEZHANISHVILI, NICK BEZHANISHVILI, DAVID GABELAIA, ALEXANDER KURZ Abstract. We introduce pairwise Stone spaces as a natural bitopological generalization of Stone spaces—the duals of Boolean algebras—and show that they are exactly the bitopolog- ical duals of bounded distributive lattices. The category PStone of pairwise Stone spaces is isomorphic to the category Spec of spectral spaces and to the category Pries of Priestley spaces. In fact, the isomorphism of Spec and Pries is most naturally seen through PStone by first establishing that Pries is isomorphic to PStone, and then showing that PStone is isomorphic to Spec. We provide the bitopological and spectral descriptions of many algebraic concepts important for the study of distributive lattices. We also give new bitopo- logical and spectral dualities for Heyting algebras, thus providing two new alternatives to Esakia’s duality. 1. Introduction It is widely considered that the beginning of duality theory was Stone’s groundbreaking work in the mid 30s on the dual equivalence of the category Bool of Boolean algebras and Boolean algebra homomorphism and the category Stone of compact Hausdorff zero- dimensional spaces, which became known as Stone spaces, and continuous functions. In 1937 Stone [33] extended this to the dual equivalence of the category DLat of bounded distributive lattices and bounded lattice homomorphisms and the category Spec of what later became known as spectral spaces and spectral maps. Spectral spaces provide a generalization of Stone 1 spaces. Unlike Stone spaces, spectral spaces are not Hausdorff (not even T1) , and as a result, are more difficult to work with. -
3 Lecture 3: Spectral Spaces and Constructible Sets
3 Lecture 3: Spectral spaces and constructible sets 3.1 Introduction We want to analyze quasi-compactness properties of the valuation spectrum of a commutative ring, and to do so a digression on constructible sets is needed, especially to define the notion of constructibility in the absence of noetherian hypotheses. (This is crucial, since perfectoid spaces will not satisfy any kind of noetherian condition in general.) The reason that this generality is introduced in [EGA] is for the purpose of proving openness and closedness results on the locus of fibers satisfying reasonable properties, without imposing noetherian assumptions on the base. One first proves constructibility results on the base, often by deducing it from constructibility on the source and applying Chevalley’s theorem on images of constructible sets (which is valid for finitely presented morphisms), and then uses specialization criteria for constructible sets to be open. For our purposes, the role of constructibility will be quite different, resting on the interesting “constructible topology” that is introduced in [EGA, IV1, 1.9.11, 1.9.12] but not actually used later in [EGA]. This lecture is organized as follows. We first deal with the constructible topology on topological spaces. We discuss useful characterizations of constructibility in the case of spectral spaces, aiming for a criterion of Hochster (see Theorem 3.3.9) which will be our tool to show that Spv(A) is spectral, our ultimate goal. Notational convention. From now on, we shall write everywhere (except in some definitions) “qc” for “quasi-compact”, “qs” for “quasi-separated”, and “qcqs” for “quasi-compact and quasi-separated”. -
Lecture II - Preliminaries from General Topology
Lecture II - Preliminaries from general topology: We discuss in this lecture a few notions of general topology that are covered in earlier courses but are of frequent use in algebraic topology. We shall prove the existence of Lebesgue number for a covering, introduce the notion of proper maps and discuss in some detail the stereographic projection and Alexandroff's one point compactification. We shall also discuss an important example based on the fact that the sphere Sn is the one point compactifiaction of Rn. Let us begin by recalling the basic definition of compactness and the statement of the Heine Borel theorem. Definition 2.1: A space X is said to be compact if every open cover of X has a finite sub-cover. If X is a metric space, this is equivalent to the statement that every sequence has a convergent subsequence. If X is a topological space and A is a subset of X we say that A is compact if it is so as a topological space with the subspace topology. This is the same as saying that every covering of A by open sets in X admits a finite subcovering. It is clear that a closed subset of a compact subset is necessarily compact. However a compact set need not be closed as can be seen by looking at X endowed the indiscrete topology, where every subset of X is compact. However, if X is a Hausdorff space then compact subsets are necessarily closed. We shall always work with Hausdorff spaces in this course. For subsets of Rn we have the following powerful result. -
Topological Description of Riemannian Foliations with Dense Leaves
TOPOLOGICAL DESCRIPTION OF RIEMANNIAN FOLIATIONS WITH DENSE LEAVES J. A. AL¶ VAREZ LOPEZ*¶ AND A. CANDELy Contents Introduction 1 1. Local groups and local actions 2 2. Equicontinuous pseudogroups 5 3. Riemannian pseudogroups 9 4. Equicontinuous pseudogroups and Hilbert's 5th problem 10 5. A description of transitive, compactly generated, strongly equicontinuous and quasi-e®ective pseudogroups 14 6. Quasi-analyticity of pseudogroups 15 References 16 Introduction Riemannian foliations occupy an important place in geometry. An excellent survey is A. Haefliger’s Bourbaki seminar [6], and the book of P. Molino [13] is the standard reference for riemannian foliations. In one of the appendices to this book, E. Ghys proposes the problem of developing a theory of equicontinuous foliated spaces parallel- ing that of riemannian foliations; he uses the suggestive term \qualitative riemannian foliations" for such foliated spaces. In our previous paper [1], we discussed the structure of equicontinuous foliated spaces and, more generally, of equicontinuous pseudogroups of local homeomorphisms of topological spaces. This concept was di±cult to develop because of the nature of pseudogroups and the failure of having an in¯nitesimal characterization of local isome- tries, as one does have in the riemannian case. These di±culties give rise to two versions of equicontinuity: a weaker version seems to be more natural, but a stronger version is more useful to generalize topological properties of riemannian foliations. Another relevant property for this purpose is quasi-e®ectiveness, which is a generalization to pseudogroups of e®ectiveness for group actions. In the case of locally connected fo- liated spaces, quasi-e®ectiveness is equivalent to the quasi-analyticity introduced by Date: July 19, 2002. -
1. Introduction Practical Information About the Course. Problem Classes
1. Introduction Practical information about the course. Problem classes - 1 every 2 weeks, maybe a bit more Coursework – two pieces, each worth 5% Deadlines: 16 February, 14 March Problem sheets and coursework will be available on my web page: http://wwwf.imperial.ac.uk/~morr/2016-7/teaching/alg-geom.html My email address: [email protected] Office hours: Mon 2-3, Thur 4-5 in Huxley 681 Bézout’s theorem. Here is an example of a theorem in algebraic geometry and an outline of a geometric method for proving it which illustrates some of the main themes in algebraic geometry. Theorem 1.1 (Bézout). Let C be a plane algebraic curve {(x, y): f(x, y) = 0} where f is a polynomial of degree m. Let D be a plane algebraic curve {(x, y): g(x, y) = 0} where g is a polynomial of degree n. Suppose that C and D have no component in common (if they had a component in common, then their intersection would obviously be infinite). Then C ∩ D consists of mn points, provided that (i) we work over the complex numbers C; (ii) we work in the projective plane, which consists of the ordinary plane together with some points at infinity (this will be formally defined later in the course); (iii) we count intersections with the correct multiplicities (e.g. if the curves are tangent at a point, it counts as more than one intersection). We will not define intersection multiplicities in this course, but the idea is that multiple intersections resemble multiple roots of a polynomial in one variable.