Compactness in Toposes

Total Page:16

File Type:pdf, Size:1020Kb

Compactness in Toposes Algant Master Thesis Compactness in Toposes Candidate: Advisor: Mauro Mantegazza Dr. Jaap van Oosten Coadvisors: Prof. Sandra Mantovani Prof. Ronald van Luijk Universita` degli Studi Universiteit di Milano Leiden 30 April 2015 ii Contents Introduction . .v Acknowledgements . viii 1 Toposes, Sites and 2-Categories 1 1.1 Toposes . .3 1.2 Grothendieck toposes . .7 1.3 Grothendieck topologies . 10 1.4 Coherent sites . 20 1.5 2-categories . 31 1.6 Beck-Chevalley conditions . 39 2 Geometry of toposes 45 2.1 Frames . 45 2.2 From spaces to locales . 47 2.3 Maps of locales . 54 2.4 Sheaves of locales . 57 2.5 From locales to toposes . 62 3 Internal structures 69 3.1 Internal category theory . 70 3.2 Limits and colimits of internal diagrams . 77 3.3 Internal categories in a topos . 78 3.4 Internal categories in toposes over a base . 84 4 Special geometric morphisms 91 4.1 Surjections and inclusions . 91 4.2 Bounded geometric morphisms . 95 4.3 Hyperconnected and localic morphisms . 100 5 Compact toposes and proper morphisms 105 5.1 Compactness . 105 5.2 Proper maps . 112 5.3 Pretopos sites and weak BC condition . 123 5.4 Further developments . 130 iii iv CONTENTS A Trees and induction 133 A.1 Pretopologies . 136 A.2 Applications to Section 1.4 . 141 Index of symbols 147 Index 149 Bibliography 153 CONTENTS v Introduction One of the possible interpretations of a topos is as a generalized space. The reason why we can think in these terms is because of the example we are about to give. Consider a topological space X, we can consider the category Sh(X) of sheaves over X and morphisms between them. It turns out that such a cat- egory is a topos and moreover, if the topological space is regular enough (i.e. sober), then the topos Sh(X) alone contains enough categorical information in order to reconstruct back X. We might therefore identify (sober) topo- logical spaces with their topos of sheaves and hence see them as a particular case of a broader concept of space represented by toposes. Broadly speaking, the main objective of this thesis is to translate the classi- cal notion of compactness in topos theoretic terms, that is, to find a suitable definition of compact topos such that in the particular case of Sh(X) it will coincide with the compactness of X as a topological space. Actually the situation is more delicate: rather than picking toposes alone as spaces, we should consider toposes E equipped with a particular morphism (geometric morphism) into another topos S called base topos. In order to understand the reason behind this requirement, we will need to discuss an- other interpretation of toposes, namely the interpretation as a universe for mathematics. In the classical theory, the base topos is the category Set of sets and functions, in fact what we usually do in ordinary mathematics is to describe the objects we are working with using sets and functions. For instance a group G is a set G equipped with two functions e : 1 / G and · : G×G / G, the first selecting the identity and the second describing the multiplication, such that the usual axioms are satisfied. A group though is just a model for a certain theory (Group theory) and it turns out that there is a way to interpret the standard logical formulas in every topos S so that it becomes possible to talk about models of group theory inside S. For example if X is a topological space, a group in Sh(X) is a group sheaf, that is, a sheaf F on X where the families F (U) are groups for every open U and the restriction morphisms are group homomorphisms. Following this principle then, we could just take a topos S, set it as universe for our own mathematics and, working as if it were our category of sets, we could deduce our own interpretation of mathematics. An emblematic exam- ple can be seen in Section 2.4 of [LT], where it is shown the construction of a topos S which is a universe where every real function f : R / R must be continuous. We can introduce a special kind of morphisms called geometric morphisms, which will also provide a way to transfer informations from one topos to another, and if we have a geometric morphism E / S we will think of E as a topos in the universe S and for this reason we can refer to such a topos E as a S-topos. vi CONTENTS Coming back to the idea of generalized space, we can think that a (sober) topological space X is represented by a geometric morphism of the form Sh(X) / Set, for in fact a topological space is considered in the universe of sets. We can then think of Set-toposes as generalized spaces in the universe of sets and more in general, for every topos S, we can interpret S-toposes as generalized spaces in the universe S. We can finally state more precisely the first aim of this thesis, which is to give a good definition of compact S-topos that generalizes the classical compactness (so in particular Sh(X) will be a compact Set-topos iff X is compact). Once we achieve this goal, we start studying some properties and characterizations of S-compact toposes and in particular the properties of those geometric morphisms E / S which render E a compact S-topos, which will be given the name of proper geometric morphisms. For these purposes, we follow the ideas already presented in the book [MV], exposing the theoretical preliminaries required to understand it and filling in the gaps left to the reader. The following is a brief description of the contents of this thesis. In the first chapter we give the definitions of topos and geometric mor- phism and we study some fundamental result about them. We then move to the particular case of Grothendieck toposes, which are a generalization of the notion of "category of sheaves", where instead of considering sheaves over opens of a topological space, we consider sheaves over sites, that is, cat- egories equipped with a notion of coverage. Later on we study some special site with nice properties, for they will be needed in the following chapters. We then move to a brief study of 2-categories which will enable us to talk about the 2-category Geom of toposes and geometric morphisms, and about Beck-Chevalley conditions. The second chapter is of a more geometrical nature: here in fact we anal- yse in a more detailed way the steps that bring us from topological spaces to toposes, passing in particular through locales, which are a generalization of topological spaces where points are no more needed. We study in par- ticular locales and the particularly regular way in which they embed in Geom. The third chapter treats the internalization of category theory in toposes and in toposes over a base. More precisely we describe the internal version of categories, diagrams, limits and colimits and then we study some condi- tions about preservation of filtered internal colimits. In the fourth chapter we come back to geometry, for we deal with some example of geometric morphism, namely surjections, inclusions and their fac- torization system; bounded morphisms and their relation with Grothendieck CONTENTS vii toposes; and the hyperconnected-localic factorization. In the last chapter we finally deal with compactness, studying first the case of a compact Set-topos and then generalizing it to the general case represented by proper geometric morphisms. We then analyse the relation between proper morphisms and the ones described in the previous chapter, along with some other property and characterization of proper geometric morphisms. We finish it by hinting at some other developments of this the- ory. The Appendix contains some technical result about trees and well-founded induction. In particular it also contains some fact about Grothendieck pre- topologies (a special kind of coverage) and some useful result used in this thesis. viii CONTENTS Acknowledgements I wish to thank Dr. Jaap van Oosten for his helpful advices, Prof. Sandra Mantovani for her availability and both of them for their courses in category theory. Along with them I wish to express my gratitude to all those pro- fessors that, through their passion, were able to convey the beauty of their teachings. Thanks to all those friends that I met during my studies, for the ideas and thoughts shared in these years and for the great times (and the less great ones) spent together. I also want to thank my awesome friends from all over the world, encountered during my staying abroad, for thanks to them it really felt like home, and thanks to ALGANT as well for allowing me this opportunity. Special thanks go to Andrea Gagna for the good and bad experiences we shared together, for the inspiring discussions we had, for his availability in time of need and for his everlasting patience. Last but not least I wish to thank my family, without whose encouragement and unconditioned support I would not have made it this far. Chapter 1 Toposes, Sites and 2-Categories In this first chapter we are presenting some of the main tools required to understand the topic of this thesis. We will start by exploring some funda- mental notions of topos theory in the first two sections. After that we will have to go through some more technical result regarding sites (a sort of wide generalization of a space containing the minimal information needed in order to talk about sheaves).
Recommended publications
  • Arxiv:1403.7027V2 [Math.AG] 21 Oct 2015 Ytnoigit Iebnlson Bundles Line Into Tensoring by N Ytednsyfoundation
    ON EQUIVARIANT TRIANGULATED CATEGORIES ALEXEY ELAGIN Abstract. Consider a finite group G acting on a triangulated category T . In this paper we investigate triangulated structure on the category T G of G-equivariant objects in T . We prove (under some technical conditions) that such structure exists. Supposed that an action on T is induced by a DG-action on some DG-enhancement of T , we construct a DG-enhancement of T G. Also, we show that the relation “to be an equivariant category with respect to a finite abelian group action” is symmetric on idempotent complete additive categories. 1. Introduction Triangulated categories became very popular in algebra, geometry and topology in last decades. In algebraic geometry, they arise as derived categories of coherent sheaves on algebraic varieties or stacks. It turned out that some geometry of varieties can be under- stood well through their derived categories and homological algebra of these categories. Therefore it is always interesting and important to understand how different geometrical operations, constructions, relations look like on the derived category side. In this paper we are interested in autoequivalences of derived categories or, more gen- eral, in group actions on triangulated categories. For X an algebraic variety, there are “expected” autoequivalences of Db(coh(X)) which are induced by automorphisms of X or by tensoring into line bundles on X. If X is a smooth Fano or if KX is ample, essentially that is all: Bondal and Orlov have shown in [6] that for smooth irreducible projective b variety X with KX or −KX ample all autoequivalences of D (coh(X)) are generated by automorphisms of X, twists into line bundles on X and translations.
    [Show full text]
  • Classification of Subcategories in Abelian Categories and Triangulated Categories
    CLASSIFICATION OF SUBCATEGORIES IN ABELIAN CATEGORIES AND TRIANGULATED CATEGORIES ATHESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS UNIVERSITY OF REGINA By Yong Liu Regina, Saskatchewan September 2016 c Copyright 2016: Yong Liu UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Yong Liu, candidate for the degree of Doctor of Philosophy in Mathematics, has presented a thesis titled, Classification of Subcategories in Abelian Categories and Triangulated Categories, in an oral examination held on September 8, 2016. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. Henning Krause, University of Bielefeld Supervisor: Dr. Donald Stanley, Department of Mathematics and Statistics Committee Member: Dr. Allen Herman, Department of Mathematics and Statistics Committee Member: *Dr. Fernando Szechtman, Department of Mathematics and Statistics Committee Member: Dr. Yiyu Yao, Department of Computer Science Chair of Defense: Dr. Renata Raina-Fulton, Department of Chemistry and Biochemistry *Not present at defense Abstract Two approaches for classifying subcategories of a category are given. We examine the class of Serre subcategories in an abelian category as our first target, using the concepts of monoform objects and the associated atom spectrum [13]. Then we generalize this idea to give a classification of nullity classes in an abelian category, using premonoform objects instead to form a new spectrum so that there is a bijection between the collection of nullity classes and that of closed and extension closed subsets of the spectrum.
    [Show full text]
  • N-Quasi-Abelian Categories Vs N-Tilting Torsion Pairs 3
    N-QUASI-ABELIAN CATEGORIES VS N-TILTING TORSION PAIRS WITH AN APPLICATION TO FLOPS OF HIGHER RELATIVE DIMENSION LUISA FIOROT Abstract. It is a well established fact that the notions of quasi-abelian cate- gories and tilting torsion pairs are equivalent. This equivalence fits in a wider picture including tilting pairs of t-structures. Firstly, we extend this picture into a hierarchy of n-quasi-abelian categories and n-tilting torsion classes. We prove that any n-quasi-abelian category E admits a “derived” category D(E) endowed with a n-tilting pair of t-structures such that the respective hearts are derived equivalent. Secondly, we describe the hearts of these t-structures as quotient categories of coherent functors, generalizing Auslander’s Formula. Thirdly, we apply our results to Bridgeland’s theory of perverse coherent sheaves for flop contractions. In Bridgeland’s work, the relative dimension 1 assumption guaranteed that f∗-acyclic coherent sheaves form a 1-tilting torsion class, whose associated heart is derived equivalent to D(Y ). We generalize this theorem to relative dimension 2. Contents Introduction 1 1. 1-tilting torsion classes 3 2. n-Tilting Theorem 7 3. 2-tilting torsion classes 9 4. Effaceable functors 14 5. n-coherent categories 17 6. n-tilting torsion classes for n> 2 18 7. Perverse coherent sheaves 28 8. Comparison between n-abelian and n + 1-quasi-abelian categories 32 Appendix A. Maximal Quillen exact structure 33 Appendix B. Freyd categories and coherent functors 34 Appendix C. t-structures 37 References 39 arXiv:1602.08253v3 [math.RT] 28 Dec 2019 Introduction In [6, 3.3.1] Beilinson, Bernstein and Deligne introduced the notion of a t- structure obtained by tilting the natural one on D(A) (derived category of an abelian category A) with respect to a torsion pair (X , Y).
    [Show full text]
  • Lecture II - Preliminaries from General Topology
    Lecture II - Preliminaries from general topology: We discuss in this lecture a few notions of general topology that are covered in earlier courses but are of frequent use in algebraic topology. We shall prove the existence of Lebesgue number for a covering, introduce the notion of proper maps and discuss in some detail the stereographic projection and Alexandroff's one point compactification. We shall also discuss an important example based on the fact that the sphere Sn is the one point compactifiaction of Rn. Let us begin by recalling the basic definition of compactness and the statement of the Heine Borel theorem. Definition 2.1: A space X is said to be compact if every open cover of X has a finite sub-cover. If X is a metric space, this is equivalent to the statement that every sequence has a convergent subsequence. If X is a topological space and A is a subset of X we say that A is compact if it is so as a topological space with the subspace topology. This is the same as saying that every covering of A by open sets in X admits a finite subcovering. It is clear that a closed subset of a compact subset is necessarily compact. However a compact set need not be closed as can be seen by looking at X endowed the indiscrete topology, where every subset of X is compact. However, if X is a Hausdorff space then compact subsets are necessarily closed. We shall always work with Hausdorff spaces in this course. For subsets of Rn we have the following powerful result.
    [Show full text]
  • Proper Maps and Universally Closed Maps
    Proper Maps and Universally Closed Maps Reinhard Schultz Continuous functions defined on compact spaces generally have special properties. For exam- ple, if X is a compact space and Y is a Hausdorff space, then f is a closed mapping. There is a useful class of continuous mappings called proper, perfect, or compact maps that satisfy many properties of continuous maps with compact domains. In this note we shall study a few basic properties of these maps. Further information about proper maps can be found in Bourbaki [B2], Section I.10), Dugundji [D] (Sections XI.5{6, pages 235{240), and Kasriel [K] (Sections 95 and 105, pages 214{217 and 243{247). There is a slight difference between the notions of perfect and compact mappings in [B2], [D], and [K] and the notion of proper map considered here. Specifically, the definitions in [D] and [K] include a requirement that the maps in question be surjective. The definition in [B2] is entirely different and corresponds to the notion of univer- sally closed map discussed later in these notes; the equivalence of this definition with ours for a reasonable class of spaces is proved both in [B2] and in these notes (see the section Universally closed maps). PROPER MAPS If f : X ! Y is a continuous map of topological spaces, then f is said to be proper if for each compact subset K ⊂ Y the inverse image f −1[K] is also compact. EXAMPLE. Suppose that A is a finite subset of Rn and f : Rn − A ! Rm is a continuous function such that for all a 2 A we have lim jf(x)j = lim jf(x)j = 1: x!a x!1 Then f is proper.
    [Show full text]
  • Topos Theory
    Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d.
    [Show full text]
  • Basic Category Theory and Topos Theory
    Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object .
    [Show full text]
  • Weak Subobjects and Weak Limits in Categories and Homotopy Categories Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 38, No 4 (1997), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES MARCO GRANDIS Weak subobjects and weak limits in categories and homotopy categories Cahiers de topologie et géométrie différentielle catégoriques, tome 38, no 4 (1997), p. 301-326 <http://www.numdam.org/item?id=CTGDC_1997__38_4_301_0> © Andrée C. Ehresmann et les auteurs, 1997, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET Volume XXXVIII-4 (1997) GEOMETRIE DIFFERENTIELLE CATEGORIQUES WEAK SUBOBJECTS AND WEAK LIMITS IN CATEGORIES AND HOMOTOPY CATEGORIES by Marco GRANDIS R6sumi. Dans une cat6gorie donn6e, un sousobjet faible, ou variation, d’un objet A est defini comme une classe d’6quivalence de morphismes A valeurs dans A, de faqon a étendre la notion usuelle de sousobjet. Les sousobjets faibles sont lies aux limites faibles, comme les sousobjets aux limites; et ils peuvent 8tre consid6r6s comme remplaqant les sousobjets dans les categories "a limites faibles", notamment la cat6gorie d’homotopie HoTop des espaces topologiques, ou il forment un treillis de types de fibration sur 1’espace donn6. La classification des variations des groupes et des groupes ab£liens est un outil important pour d6terminer ces types de fibration, par les foncteurs d’homotopie et homologie. Introduction We introduce here the notion of weak subobject in a category, as an extension of the notion of subobject.
    [Show full text]
  • Introduction to Category Theory (Notes for Course Taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT)
    Introduction to category theory (notes for course taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT) Alexander Yom Din February 10, 2021 It is never true that two substances are entirely alike, differing only in being two rather than one1. G. W. Leibniz, Discourse on metaphysics 1This can be imagined to be related to at least two of our themes: the imperative of considering a contractible groupoid of objects as an one single object, and also the ideology around Yoneda's lemma ("no two different things have all their properties being exactly the same"). 1 Contents 1 The basic language 3 1.1 Categories . .3 1.2 Functors . .7 1.3 Natural transformations . .9 2 Equivalence of categories 11 2.1 Contractible groupoids . 11 2.2 Fibers . 12 2.3 Fibers and fully faithfulness . 12 2.4 A lemma on fully faithfulness in families . 13 2.5 Definition of equivalence of categories . 14 2.6 Simple examples of equivalence of categories . 17 2.7 Theory of the fundamental groupoid and covering spaces . 18 2.8 Affine algebraic varieties . 23 2.9 The Gelfand transform . 26 2.10 Galois theory . 27 3 Yoneda's lemma, representing objects, limits 27 3.1 Yoneda's lemma . 27 3.2 Representing objects . 29 3.3 The definition of a limit . 33 3.4 Examples of limits . 34 3.5 Dualizing everything . 39 3.6 Examples of colimits . 39 3.7 General colimits in terms of special ones . 41 4 Adjoint functors 42 4.1 Bifunctors . 42 4.2 The definition of adjoint functors . 43 4.3 Some examples of adjoint functors .
    [Show full text]
  • Lecture Notes on Sheaves, Stacks, and Higher Stacks
    Lecture Notes on Sheaves, Stacks, and Higher Stacks Adrian Clough September 16, 2016 2 Contents Introduction - 26.8.2016 - Adrian Cloughi 1 Grothendieck Topologies, and Sheaves: Definitions and the Closure Property of Sheaves - 2.9.2016 - NeˇzaZager1 1.1 Grothendieck topologies and sheaves.........................2 1.1.1 Presheaves...................................2 1.1.2 Coverages and sheaves.............................2 1.1.3 Reflexive subcategories.............................3 1.1.4 Coverages and Grothendieck pretopologies..................4 1.1.5 Sieves......................................6 1.1.6 Local isomorphisms..............................9 1.1.7 Local epimorphisms.............................. 10 1.1.8 Examples of Grothendieck topologies..................... 13 1.2 Some formal properties of categories of sheaves................... 14 1.3 The closure property of the category of sheaves on a site.............. 16 2 Universal Property of Sheaves, and the Plus Construction - 9.9.2016 - Kenny Schefers 19 2.1 Truncated morphisms and separated presheaves................... 19 2.2 Grothendieck's plus construction........................... 19 2.3 Sheafification in one step................................ 19 2.3.1 Canonical colimit................................ 19 2.3.2 Hypercovers of height 1............................ 19 2.4 The universal property of presheaves......................... 20 2.5 The universal property of sheaves........................... 20 2.6 Sheaves on a topological space............................ 21 3 Categories
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Arxiv:2012.08669V1 [Math.CT] 15 Dec 2020 2 Preface
    Sheaf Theory Through Examples (Abridged Version) Daniel Rosiak December 12, 2020 arXiv:2012.08669v1 [math.CT] 15 Dec 2020 2 Preface After circulating an earlier version of this work among colleagues back in 2018, with the initial aim of providing a gentle and example-heavy introduction to sheaves aimed at a less specialized audience than is typical, I was encouraged by the feedback of readers, many of whom found the manuscript (or portions thereof) helpful; this encouragement led me to continue to make various additions and modifications over the years. The project is now under contract with the MIT Press, which would publish it as an open access book in 2021 or early 2022. In the meantime, a number of readers have encouraged me to make available at least a portion of the book through arXiv. The present version represents a little more than two-thirds of what the professionally edited and published book would contain: the fifth chapter and a concluding chapter are missing from this version. The fifth chapter is dedicated to toposes, a number of more involved applications of sheaves (including to the \n- queens problem" in chess, Schreier graphs for self-similar groups, cellular automata, and more), and discussion of constructions and examples from cohesive toposes. Feedback or comments on the present work can be directed to the author's personal email, and would of course be appreciated. 3 4 Contents Introduction 7 0.1 An Invitation . .7 0.2 A First Pass at the Idea of a Sheaf . 11 0.3 Outline of Contents . 20 1 Categorical Fundamentals for Sheaves 23 1.1 Categorical Preliminaries .
    [Show full text]