A Bivariant Yoneda Lemma and (∞,2)-Categories of Correspondences

Total Page:16

File Type:pdf, Size:1020Kb

A Bivariant Yoneda Lemma and (∞,2)-Categories of Correspondences A bivariant Yoneda lemma and (∞,2)-categories of correspondences* Andrew W. Macpherson August 12, 2021 Abstract A well-known folklore states that if you have a bivariant homology theory satisfying a base change formula, you get a representation of a category of correspondences. For theories in which the covariant and contravariant transfer maps are in mutual adjunction, these data are actually equivalent. In other words, a 2-category of correspondences is the universal way to attach to a given 1-category a set of right adjoints that satisfy a base change formula . Through a bivariant version of the Yoneda paradigm, I give a definition of correspondences in higher category theory and prove an extension theorem for bivariant functors. Moreover, conditioned on the existence of a 2-dimensional Grothendieck construction, I provide a proof of the aforementioned universal property. The methods, morally speaking, employ the ‘internal logic’ of higher category theory: they make no explicit use of any particular model. Contents 1 Introduction 2 2 Higher category theory 7 2.1 Homotopy invariance in higher category theory . .............. 7 2.2 Models of n-categorytheory .................................. 9 2.3 Mappingobjectsinhighercategories . ............. 11 2.4 Enrichmentfromtensoring. .......... 12 2.5 Bootstrapping n-naturalisomorphisms . 14 2.6 Fibrations ...................................... ....... 15 2.7 Grothendieckconstruction . ........... 17 2.8 Evaluationmap................................... ....... 18 2.9 Adjoint functors and adjunctions in 2-categories . ................. 23 arXiv:2005.10496v2 [math.CT] 10 Aug 2021 3 Bivariance 25 3.1 Basechange...................................... ...... 26 3.2 Bivariantfunctors ............................... ......... 27 3.3 Universalbivariantextensions . ............ 30 3.4 Bi-Cartesianfibrations . .......... 32 3.5 Freebivariantfibrations . .......... 35 *AMS Math subject classification tags: 18G99 “None of the above, but in this section (derived categories)”; 18D20 “Enriched categories”; 18A40 “Adjoint functors”; 55U40 “Topological categories”; 55P65 “Homotopy functors”. The bulk of this work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan, and by JSPS KAKENHI Grant Number JP19K14522. Later revisions were supported by JSPS KAKENHI Grant Number JP16H06337. 1 3.6 TwistedCartesianfibrations . ........... 37 3.7 BivariantYonedalemma .. .. .. .. .. .. .. .. .. .. .. .. .. .. ........ 38 3.8 Localrepresentationofspans . ........... 40 3.9 Spansonabivariantfunctor . .......... 43 3.10 Omake: composition of correspondences . .............. 46 4 Universal property (†) 48 4.1 2-categoricalGrothendieckintegration . ................ 48 4.2 Spansonafamilyofbivariantfunctors . ............ 49 4.3 Correspondences and Cartesian fibrations . .............. 52 4.4 Monoidalstructure............................... ......... 55 5 Examples 57 5.1 Cartesian and co-Cartesian symmetric monoidal structures............... 57 5.2 Categoriesofcoefficients . ........... 59 1 Introduction Let D be a category with fibre products. We can define a category CorrD of correspondences in D as follows: Definition. The category CorrD of correspondences in D comprises the following data: (0) Objects of CorrD are objects of D. (1) A map X 9 Y in CorrD is a span K ❅ p ⑦⑦ ❅❅ q ⑦⑦ ❅❅ ⑦⑦ ❅❅ ⑦~ ⑦ ❅ X Y (◦) The composite of spans [X ← K → Y ] and [Y ← K ′ → Z] is calculated by the fibre product ′ K ×Y K ✈ ❍❍ ✈✈ ❍❍ ✈✈ ❍❍ ✈✈ ❍❍ ✈{ ✈ ❍$ X Z. of K with K ′ over Y . The associative law for composition can be deduced from that of fibre products. The reader may object that fibre products are defined only up to unique isomorphism and not on the nose: CorrD is more properly a (2,1)-category whose mapping objects are groupoids. This issue is, in a sense, the crux of the whole paper, and we’ll return to it shortly. Each map f : X → D in D defines two morphisms in CorrD: f • a ‘right-way’ map [X←˜ X → Y ] from X to Y , written f!; f • a ‘wrong-way’ map [Y ← X→˜ X] from Y to X, written f !. 2 These right and wrong way maps satisfy a compatibility condition called the base change formula, which says that if g¯ X ×Y Z / X f¯ f g Y / Z ! ¯! is a fibre product square in D, then g! f = f g¯!, since either composite is given by the same correspondence [X ← X ×Y Z → Y ]. This is in a precise sense the only relation: one can show, by explicitly checking relations, that to define a functor out of CorrD it is enough to define a covariant and a contravariant functor out of D such that this base change formula is satisfied. Correspondences and cohomology Students of the homology of manifolds, and its big city cousin, Grothendieck’s theory of motives, will be familiar with settings in which data of the above form is available. That is, we are given a contravariant functor H : D → Eop which has, at least for a subclass SD of morphisms in D, also a covariant behaviour in the form of transfer or Gysin maps. Perhaps after imposing further conditions, these satisfy a base change formula and hence define a functor op Spex(H) : Corr(D; SD) → E where Corr(D; SD) ⊆ Corr(D) is the subcategory where morphisms are those spans whose wrong- way component belongs to SD. Example (Cohomology). Let SmC denote the category of smooth quasi-projective varieties over C and let pr|sm be the class of projective submersions. De Rham cohomology with complex coeffi- cients defines a functor • C Z op HdR(−; ): SmC → (VectC) into the category of Z-graded C-vector spaces. For morphisms f : X → Y in pr|sm there is also • •−dimR(X/Y ) a transfer map f! : H (X;C) → H (Y ;C) defined using Poincaré duality, and this map satisfies the base change compatibility with pullbacks. (The transfer map is actually defined for any projective morphism in SmC, but we cannot always pull back projective morphisms and keep the domain smooth.) We therefore obtain a functor • op Spex(⊕•HdR) : Corr(SmC,pr|sm) → VectC where we summed over the grading to avoid having to deal with the dimension shift. This con- struction parallels that of HdR as a functor on Grothendieck’s category of Chow motives. Example (Cochains). The homotopy coherence issue one encounters when attempting to construct a chain level version of HdR is familiar. Although this can be solved using a sufficiently robust model for de Rham cochains, the modern approach is to find a native ∞-categorical construction. Introducing Gysin maps and base change, the coherence issue is further compounded: the ∞-functor lift of Spex(HdR) must somehow encode coherences between base change homotopies in arbitrary composite grids of base change squares, in a 2-dimensional version of that classic problem of higher category theory. (The 2-cells in the (2,1)-category CorrD would also have to come into play to ‘see’ these base change homotopies.) Example (Derived source). If we want to generalise the domain to include objects of a homotopical nature, such as derived manifolds or orbifolds — and we do actually want to do this in applications to Gromov-Witten theory [MR17] — then the source category is also an ∞-category; now we have to explain how to construct an ∞-category of correspondences from an input ∞-category, and how to construct ∞-functors out of it.1 1Another, completely separate, difficulty is entailed in this case, which is that Poincaré duality fails even at the level of homology. We don’t address this here, but see [STV11]. 3 In the first instance, by-hand methods are quite sufficient for constructing a functor from the correspondences category. Subsequent examples, however, highlight two questions that we must answer before correspondences can be made available in a homotopical context: i) When constructing functors from CorrD into a higher category, how can we express the compatibility needed between the covariant and contravariant parts? ii) When D is an ∞-category, the given Definition cannot be regarded as defining an ∞- category; it only specifies the 0- and 1-simplices, and the inner face map from two to one. How can we express the full associative structure of CorrD? There is an obvious way to attack problem ii) by extending the Definition to define a complete Segal space SpanD,• whose associated ∞-category deserves to be called CorrD. This is the ap- proach taken, for example, in [DK19, Chap. 10]. However, when it comes to problem i), we are still left with trying to manipulate an infinite hierarchy of compatibilities. While it is surely possible with enough effort to chase down these compatibilities directly, a more satisfying strategy is to try to define a ‘machine’ that churns out the necessary relations automatically. For the present example, we need a machine that manufactures relations between the covariant and contravariant aspects of de Rham cohomology. To construct this machine, we will pass into the world of (∞,2)-category theory. Categorification We can extend the preceding Definition and enhance CorrD to a 2-category of correspondences in D by defining 2-cells as follows: (2) A morphism from [X ← K → Y ]to[X ← K ′ → Y ] is a commutative diagram K ▼ qqq ▼▼▼ qx qq ▼▼& Xf 8 Y ▼▼▼ rr ▼▼▼ rrr K ′ r in D. (There are other interesting possibilities for 2-cells in CorrD [GR17; Hau14], but we will not pursue them in this paper.) With this class of 2-cells, each ‘right-way’ map is left adjoint, in the sense internal to the 2-category CorrD, to the corresponding ‘wrong-way’ map. The unit, respectively counit of the ! adjunction f! ⊣ f is depicted X ×Y X X ✈ O ❍❍ ⑦ ❅❅ ✈✈ ❍❍ ⑦⑦ ❅❅ ✈✈ e ❍❍ ⑦⑦ ǫ ❅❅ ✈✈ ❍❍ ⑦ ❅❅ ✈{ ✈ ❍# ⑦ ⑦
Recommended publications
  • Table of Contents
    UNIVERSAL PROPERTY & CASUALTY INSURANCE COMPANY MASSACHUSETTS PERSONAL PROPERTY MANUAL HOMEOWNERS PROGRAM EDITION 02/15 TABLE OF CONTENTS RULE CONTENT PAGE NO. 1 Application of Program Rules 1 2 Reserved for Future Use 1 3 Extent of Coverage 1 4 Reserved for Future Use 1 5 Policy Fee 1 6 Reserved for Future Use 1 7 Policy Period, Minimum Premium and Waiver of Premium 1 8 Rounding of Premiums 1 9 Changes and Mid-Term Premium Adjustments 2 10 Effective Date and Important Notices 2 11 Protective Device Credits 2 12 Townhouses or Rowhouses 2 13 Underwriting Surcharges 3 14 Mandatory Additional Charges 3 15 Payment and Payment Plan Options 4 16 Building Code Compliance 5 100 Reserved for Future Use 5 101 Limits of Liability and Coverage Relationship 6 102 Description of Coverages 6 103 Mandatory Coverages 7 104 Eligibility 7 105 Secondary Residence Premises 9 106 Reserved for Future Use 9 107 Construction Definitions 9 108 Seasonal Dwelling Definition 9 109 Single Building Definition 9 201 Policy Period 9 202 Changes or Cancellations 9 203 Manual Premium Revision 9 204 Reserved for Future Use 10 205 Reserved for Future Use 10 206 Transfer or Assignment 10 207 Reserved for Future Use 10 208 Premium Rounding Rule 10 209 Reserved for Future Use 10 300 Key Factor Interpolation Computation 10 301 Territorial Base Rates 11 401 Reserved for Future Use 20 402 Personal Property (Coverage C ) Replacement Cost Coverage 20 403 Age of Home 20 404 Ordinance or Law Coverage - Increased Limits 21 405 Debris Removal – HO 00 03 21 406 Deductibles 22 407 Additional
    [Show full text]
  • Arxiv:1705.02246V2 [Math.RT] 20 Nov 2019 Esyta Ulsubcategory Full a That Say [15]
    WIDE SUBCATEGORIES OF d-CLUSTER TILTING SUBCATEGORIES MARTIN HERSCHEND, PETER JØRGENSEN, AND LAERTIS VASO Abstract. A subcategory of an abelian category is wide if it is closed under sums, summands, kernels, cokernels, and extensions. Wide subcategories provide a significant interface between representation theory and combinatorics. If Φ is a finite dimensional algebra, then each functorially finite wide subcategory of mod(Φ) is of the φ form φ∗ mod(Γ) in an essentially unique way, where Γ is a finite dimensional algebra and Φ −→ Γ is Φ an algebra epimorphism satisfying Tor (Γ, Γ) = 0. 1 Let F ⊆ mod(Φ) be a d-cluster tilting subcategory as defined by Iyama. Then F is a d-abelian category as defined by Jasso, and we call a subcategory of F wide if it is closed under sums, summands, d- kernels, d-cokernels, and d-extensions. We generalise the above description of wide subcategories to this setting: Each functorially finite wide subcategory of F is of the form φ∗(G ) in an essentially φ Φ unique way, where Φ −→ Γ is an algebra epimorphism satisfying Tord (Γ, Γ) = 0, and G ⊆ mod(Γ) is a d-cluster tilting subcategory. We illustrate the theory by computing the wide subcategories of some d-cluster tilting subcategories ℓ F ⊆ mod(Φ) over algebras of the form Φ = kAm/(rad kAm) . Dedicated to Idun Reiten on the occasion of her 75th birthday 1. Introduction Let d > 1 be an integer. This paper introduces and studies wide subcategories of d-abelian categories as defined by Jasso. The main examples of d-abelian categories are d-cluster tilting subcategories as defined by Iyama.
    [Show full text]
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Universal Properties, Free Algebras, Presentations
    Universal Properties, Free Algebras, Presentations Modern Algebra 1 Fall 2016 Modern Algebra 1 (Fall 2016) Universal Properties, Free Algebras, Presentations 1 / 14 (1) f ◦ g exists if and only if dom(f ) = cod(g). (2) Composition is associative when it is defined. (3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ). (4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f . (5) dom(idA) = cod(idA) = A. (1) Ob(C) = O is a class whose members are called objects, (2) Mor(C) = M is a class whose members are called morphisms, (3) ◦ : M × M ! M is a binary partial operation called composition, (4) id : O ! M is a unary function assigning to each object A 2 O a morphism idA called the identity of A, (5) dom; cod : M ! O are unary functions assigning to each morphism f objects called the domain and codomain of f respectively. The laws defining categories are: Defn (Category) A category is a 2-sorted partial algebra C = hO; M; ◦; id; dom; codi where Modern Algebra 1 (Fall 2016) Universal Properties, Free Algebras, Presentations 2 / 14 (1) f ◦ g exists if and only if dom(f ) = cod(g). (2) Composition is associative when it is defined. (3) dom(f ◦ g) = dom(g), cod(f ◦ g) = cod(f ). (4) If A = dom(f ) and B = cod(f ), then f ◦ idA = f and idB ◦ f = f . (5) dom(idA) = cod(idA) = A. (2) Mor(C) = M is a class whose members are called morphisms, (3) ◦ : M × M ! M is a binary partial operation called composition, (4) id : O ! M is a unary function assigning to each object A 2 O a morphism idA called the identity of A, (5) dom; cod : M ! O are unary functions assigning to each morphism f objects called the domain and codomain of f respectively.
    [Show full text]
  • Notes and Solutions to Exercises for Mac Lane's Categories for The
    Stefan Dawydiak Version 0.3 July 2, 2020 Notes and Exercises from Categories for the Working Mathematician Contents 0 Preface 2 1 Categories, Functors, and Natural Transformations 2 1.1 Functors . .2 1.2 Natural Transformations . .4 1.3 Monics, Epis, and Zeros . .5 2 Constructions on Categories 6 2.1 Products of Categories . .6 2.2 Functor categories . .6 2.2.1 The Interchange Law . .8 2.3 The Category of All Categories . .8 2.4 Comma Categories . 11 2.5 Graphs and Free Categories . 12 2.6 Quotient Categories . 13 3 Universals and Limits 13 3.1 Universal Arrows . 13 3.2 The Yoneda Lemma . 14 3.2.1 Proof of the Yoneda Lemma . 14 3.3 Coproducts and Colimits . 16 3.4 Products and Limits . 18 3.4.1 The p-adic integers . 20 3.5 Categories with Finite Products . 21 3.6 Groups in Categories . 22 4 Adjoints 23 4.1 Adjunctions . 23 4.2 Examples of Adjoints . 24 4.3 Reflective Subcategories . 28 4.4 Equivalence of Categories . 30 4.5 Adjoints for Preorders . 32 4.5.1 Examples of Galois Connections . 32 4.6 Cartesian Closed Categories . 33 5 Limits 33 5.1 Creation of Limits . 33 5.2 Limits by Products and Equalizers . 34 5.3 Preservation of Limits . 35 5.4 Adjoints on Limits . 35 5.5 Freyd's adjoint functor theorem . 36 1 6 Chapter 6 38 7 Chapter 7 38 8 Abelian Categories 38 8.1 Additive Categories . 38 8.2 Abelian Categories . 38 8.3 Diagram Lemmas . 39 9 Special Limits 41 9.1 Interchange of Limits .
    [Show full text]
  • Arithmetical Foundations Recursion.Evaluation.Consistency Ωi 1
    ••• Arithmetical Foundations Recursion.Evaluation.Consistency Ωi 1 f¨ur AN GELA & FRAN CISCUS Michael Pfender version 3.1 December 2, 2018 2 Priv. - Doz. M. Pfender, Technische Universit¨atBerlin With the cooperation of Jan Sablatnig Preprint Institut f¨urMathematik TU Berlin submitted to W. DeGRUYTER Berlin book on demand [email protected] The following students have contributed seminar talks: Sandra An- drasek, Florian Blatt, Nick Bremer, Alistair Cloete, Joseph Helfer, Frank Herrmann, Julia Jonczyk, Sophia Lee, Dariusz Lesniowski, Mr. Matysiak, Gregor Myrach, Chi-Thanh Christopher Nguyen, Thomas Richter, Olivia R¨ohrig,Paul Vater, and J¨orgWleczyk. Keywords: primitive recursion, categorical free-variables Arith- metic, µ-recursion, complexity controlled iteration, map code evaluation, soundness, decidability of p. r. predicates, com- plexity controlled iterative self-consistency, Ackermann dou- ble recursion, inconsistency of quantified arithmetical theo- ries, history. Preface Johannes Zawacki, my high school teacher, told us about G¨odel'ssec- ond theorem, on non-provability of consistency of mathematics within mathematics. Bonmot of Andr´eWeil: Dieu existe parceque la Math´e- matique est consistente, et le diable existe parceque nous ne pouvons pas prouver cela { God exists since Mathematics is consistent, and the devil exists since we cannot prove that. The problem with 19th/20th century mathematical foundations, clearly stated in Skolem 1919, is unbound infinitistic (non-constructive) formal existential quantification. In his 1973
    [Show full text]
  • Universal Property & Casualty Insurance Company
    UNIVERSAL PROPERTY & CASUALTY INSURANCE COMPANY FLORIDA PERSONAL PROPERTY MANUAL DWELLING SECTION TABLE OF CONTENTS RULE CONTENT PAGE NO. 1 Introduction 1 2 Applications for Insurance 1 3 Extent of Coverage 6 4 Cancellations 6 5 Policy Fee 7 6 Commissions 8 7 Policy Period, Minimum Premium and Waiver of Premium 8 8 Rounding of Premiums 8 9 Changes and Mid-Term Premium Adjustments 8 10 Effective Date and Important Notices 8 11 Protective Device Discounts 9 12 Townhouse or Rowhouse 9 13 Underwriting Surcharges 10 14 Mandatory Additional Charges 10 15 Payment and Payment Plan Options 11 16 Building Code Compliance 12 100 Additional Underwriting Requirements – Dwelling Program 15 101 Forms, Coverage, Minimum Limits of Liability 16 102 Perils Insured Against 17 103 Eligibility 18 104 Reserved for Future Use 19 105 Seasonal Dwelling Definition 19 106 Construction Definitions 19 107 Single Building Definition 19 201 Policy Period 20 202 Changes or Cancellations 20 203 Manual Premium Revision 20 204 Multiple Locations 20 205 Reserved for Future Use 20 206 Transfer or Assignment 20 207 Reserved for Future Use 20 208 Reserved for Future Use 20 209 Whole Dollar Premium Rule 20 301 Base Premium Computation 21 302 Vandalism and Malicious Mischief – DP 00 01 Only 32 303 Reserved for Future Use 32 304 Permitted Incidental Occupancies 32 306 Hurricane Rates 33 402 Superior Construction 36 403 Reserved for Future Use 36 404 Dwelling Under Construction 36 405 Reserved for Future Use 36 406 Water Back-up and Sump Discharge or Overflow - Florida 36 407 Deductibles
    [Show full text]
  • Topos Theory
    Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d.
    [Show full text]
  • Free Globularily Generated Double Categories
    Free Globularily Generated Double Categories I Juan Orendain Abstract: This is the first part of a two paper series studying free globular- ily generated double categories. In this first installment we introduce the free globularily generated double category construction. The free globularily generated double category construction canonically associates to every bi- category together with a possible category of vertical morphisms, a double category fixing this set of initial data in a free and minimal way. We use the free globularily generated double category to study length, free prod- ucts, and problems of internalization. We use the free globularily generated double category construction to provide formal functorial extensions of the Haagerup standard form construction and the Connes fusion operation to inclusions of factors of not-necessarily finite Jones index. Contents 1 Introduction 1 2 The free globularily generated double category 11 3 Free globularily generated internalizations 29 4 Length 34 5 Group decorations 38 6 von Neumann algebras 42 1 Introduction arXiv:1610.05145v3 [math.CT] 21 Nov 2019 Double categories were introduced by Ehresmann in [5]. Bicategories were later introduced by Bénabou in [13]. Both double categories and bicategories express the notion of a higher categorical structure of second order, each with its advantages and disadvantages. Double categories and bicategories relate in different ways. Every double category admits an underlying bicategory, its horizontal bicategory. The horizontal bicategory HC of a double category C ’flattens’ C by discarding vertical morphisms and only considering globular squares. 1 There are several structures transferring vertical information on a double category to its horizontal bicategory, e.g.
    [Show full text]
  • Lecture Notes on Sheaves, Stacks, and Higher Stacks
    Lecture Notes on Sheaves, Stacks, and Higher Stacks Adrian Clough September 16, 2016 2 Contents Introduction - 26.8.2016 - Adrian Cloughi 1 Grothendieck Topologies, and Sheaves: Definitions and the Closure Property of Sheaves - 2.9.2016 - NeˇzaZager1 1.1 Grothendieck topologies and sheaves.........................2 1.1.1 Presheaves...................................2 1.1.2 Coverages and sheaves.............................2 1.1.3 Reflexive subcategories.............................3 1.1.4 Coverages and Grothendieck pretopologies..................4 1.1.5 Sieves......................................6 1.1.6 Local isomorphisms..............................9 1.1.7 Local epimorphisms.............................. 10 1.1.8 Examples of Grothendieck topologies..................... 13 1.2 Some formal properties of categories of sheaves................... 14 1.3 The closure property of the category of sheaves on a site.............. 16 2 Universal Property of Sheaves, and the Plus Construction - 9.9.2016 - Kenny Schefers 19 2.1 Truncated morphisms and separated presheaves................... 19 2.2 Grothendieck's plus construction........................... 19 2.3 Sheafification in one step................................ 19 2.3.1 Canonical colimit................................ 19 2.3.2 Hypercovers of height 1............................ 19 2.4 The universal property of presheaves......................... 20 2.5 The universal property of sheaves........................... 20 2.6 Sheaves on a topological space............................ 21 3 Categories
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Groups and Categories
    \chap04" 2009/2/27 i i page 65 i i 4 GROUPS AND CATEGORIES This chapter is devoted to some of the various connections between groups and categories. If you already know the basic group theory covered here, then this will give you some insight into the categorical constructions we have learned so far; and if you do not know it yet, then you will learn it now as an application of category theory. We will focus on three different aspects of the relationship between categories and groups: 1. groups in a category, 2. the category of groups, 3. groups as categories. 4.1 Groups in a category As we have already seen, the notion of a group arises as an abstraction of the automorphisms of an object. In a specific, concrete case, a group G may thus consist of certain arrows g : X ! X for some object X in a category C, G ⊆ HomC(X; X) But the abstract group concept can also be described directly as an object in a category, equipped with a certain structure. This more subtle notion of a \group in a category" also proves to be quite useful. Let C be a category with finite products. The notion of a group in C essentially generalizes the usual notion of a group in Sets. Definition 4.1. A group in C consists of objects and arrows as so: m i G × G - G G 6 u 1 i i i i \chap04" 2009/2/27 i i page 66 66 GROUPSANDCATEGORIES i i satisfying the following conditions: 1.
    [Show full text]