Sheaves, Cosheaves and Applications Justin Michael Curry University of Pennsylvania, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Sheaves, Cosheaves and Applications Justin Michael Curry University of Pennsylvania, Curry.Justin@Gmail.Com University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 1-1-2014 Sheaves, Cosheaves and Applications Justin Michael Curry University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/edissertations Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Curry, Justin Michael, "Sheaves, Cosheaves and Applications" (2014). Publicly Accessible Penn Dissertations. 1249. http://repository.upenn.edu/edissertations/1249 This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1249 For more information, please contact [email protected]. Sheaves, Cosheaves and Applications Abstract This thesis develops the theory of sheaves and cosheaves with an eye towards applications in science and engineering. To provide a theory that is computable, we focus on a combinatorial version of sheaves and cosheaves called cellular sheaves and cosheaves, which are finite families of vector spaces and maps parametrized by a cell complex. We develop cellular (co)sheaves as a new tool for topological data analysis, network coding and sensor networks. We utilize the barcode descriptor from persistent homology to interpret cellular cosheaf homology in terms of Borel-Moore homology of the barcode. We associate barcodes to network coding sheaves and prove a duality theorem there. A new approach to multi-modal sensing is introduced, where sheaves and cosheaves model detection and evasion sets. A foundation for multi- dimensional level-set persistent homology is laid via constructible cosheaves, which are equivalent to representations of MacPherson's entrance path category. By proving a van Kampen theorem, we give a direct proof of this equivalence. A cosheaf version of the i'th derived pushforward of the constant sheaf along a definable map is constructed directly as a representation of this category. We go on to clarify the relationship of cellular sheaves to cosheaves by providing a formula that takes a cellular sheaf and produces a complex of cellular cosheaves. This formula lifts ot a derived equivalence, which in turn recovers Verdier duality. Compactly-supported sheaf cohomology is expressed as the coend with the image of the constant sheaf through this equivalence. The quive alence is further used to establish relations between sheaf cohomology and a herein newly introduced theory of cellular sheaf homology. Inspired to provide fast algorithms for persistence, we prove that the derived category of cellular sheaves over a 1D cell complex is equivalent to a category of graded sheaves. Finally, we introduce the interleaving distance as an extended metric on the category of sheaves. We prove that global sections partition the space of sheaves into connected components. We conclude with an investigation into the geometry of the space of constructible sheaves over the real line, which we relate to the bottleneck distance in persistence. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Mathematics First Advisor Robert W. Ghrist Keywords algebraic topology, applied topology, cosheaves, sheaves, stratification theory Subject Categories Applied Mathematics | Mathematics This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1249 SHEAVES, COSHEAVES AND APPLICATIONS Justin Michael Curry ADISSERTATION in Mathematics Presented to the Faculties of The University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2014 Robert W. Ghrist, Andrea Mitchell University Professor Professor of Mathematics Professor of Electrical and Systems Engineering Supervisor of Dissertation David Harbater, Christopher H. Browne Distinguished Professor Professor of Mathematics Graduate Group Chairperson Dissertation Committee: Robert Ghrist, Andrea Mitchell University Professor of Mathematics Robert MacPherson, Hermann Weyl Professor of Mathematics Tony Pantev, Professor of Mathematics SHEAVES, COSHEAVES AND APPLICATIONS © 2014 Justin Michael Curry Dedicated to Michael Loyd Curry iii ACKNOWLEDGEMENTS At the current moment in time, a PhD is the highest academic degree awarded in the United States. As such, this thesis reflects over two decades of formal education and schooling across multiple institutions. It also reflects the author’s life experience to date, which is formed in many informal and non-academic ways. Accounting for all of these influences and giving credit where credit is due is an impossible task; however, I would like to take some time to thank the many hands which helped this thesis come to be. Given the public nature of this document, I will not always name names, but I will make clear the contributions of my colleagues and teachers. First and foremost I must thank my parents for bringing me into the world. While my father was in the Navy, my mother had the strongest influence on my education. Instilling a love of reading is, besides giving me life itself, the greatest gift she has given to me. I remember distinctly being told that, given our socio- economic status, receiving a scholarship was the only way I would make it to a university one day, and that reading would take me there. My sense of reverence for reading, among other things, is entirely due to my mother. In contrast, my father engaged me in philosophical dialog at a young age, which is how I gained my first experience with critical thinking. He was never much of a reader; he preferred to sort things out for himself. My entire family — aunts, uncles, cousins and grandparents included — have supported me every step of the way and they know I owe them a great deal. If anyone thinks that obtaining a PhD comes after an endless stream of suc- cesses, they are mistaken. I failed many times, and fortunately I was given many second chances. The educators in the Virginia Beach public school system gave me my first second chance by letting me retake a placement exam for the gifted and talented program. Mr. Ausberry, at Thomas Harrison Middle School, re- quested that I be accelerated a year in mathematics. Mr. Frutuozo made being a scientist seem fashionable, by being a rock star himself. At Harrisonburg High School, I had many excellent instructors, but I felt the strongest direction and guidance from Henry Buhl, Myron Blosser, Andrew Jackson, Patrick Lintner and David Loughran. Without these hardworking and underpaid teachers, I don’t think I would have gotten to go to MIT. Attending MIT as an undergrad was one of the most formative experiences of my life. It certainly tested and broke the mental toughness that I thought I had. Sitting as a freshman in Denis Auroux’s 18.100B and getting my first taste of point- set topology was like stepping in to another dimension. It was too much, too fast, iv and for a moment I thought that the gate of mathematics was closed to me. Ger- ald Sussman helped steer me back towards mathematics by preaching the value of the MIT quadrivium: logic/programming, analysis, algebra, geometry, topology, relativity and quantum mechanics. Haynes Miller gave me my second second chance by overlooking my shabby mathematical preparation and letting me study for the Part 1B tripos at Churchill College, as part of the Cambridge-MIT exchange program. Cambridge exposed me to one of the greatest mathematical cultures to ever exist. The integrated nature of the classes and the year-long preparation for the tripos helped me gain independence and synthesize my lessons into a unified whole. It was in the Churchill buttery, where Part II and III students waxed poetic about Riemann surfaces and topoi before I even knew what a ring was, that I de- cided I had to pursue mathematics for graduate school. Returning to MIT, Haynes exposed me to even more advanced mathematics through summer projects and an IAP project with Aliaa Barakat on integrable systems. Working with Aliaa and, later, Victor Guillemin gave me lots of practice with writing mathematics. All of this has served me well for graduate school. The University of Pennsylvania appealed to my theory-building nature, but it was having to retake the preliminary exams that helped me become a bet- ter problem-solver. While drudging through the Berkeley Problems in Mathemat- ics [dSS04] book, my classes gave me something to look forward to. Tony Pan- tev made the first-year algebra sequence geometric for me, by introducing us to the Serre-Swan correspondence, categories, simplicial sets, spectra and sheaves. Jonathan Block balanced the algebraic and the geometric in Penn’s lengthy topol- ogy sequence and introduced us to “Brave New Algebra.” The graduate student body at Penn helped contextualize my mathematical lessons, while my roommate, Elaine So, gave me lessons in how to be a better human. My advisor, Robert Ghrist, believed in me when I did not believe in myself. He taught me to have good taste in mathematics and introduced me to Morse theory, Euler calculus, integral geometry and much more. When I first became his stu- dent, the idea that no mathematical object is too abstract to be incarnate resonated deeply with me then, as it does today. Rob outlined a beautiful vision for applied mathematics and worked very hard to realize his ambitious plan. By bringing Yasu Hiraoka, Sanjeevi Krishnan, David Lipsky, Michael Robinson and Radmila Sazdanovic together, Rob augmented my graduate training in profound ways. Given this investment, Rob was extremely generous to let me wander geographi- cally and intellectually. Because of him and Penn’s Exchange Scholar program, I was able to live in Princeton for the last few years of my graduate career. At Princeton, I approached Bob MacPherson in person, who luckily was think- ing about applied sheaf theory because of my advisor and Amit Patel, and he agreed to organize a seminar at the Institute for Advanced Study. Listening and watching Bob lecture was like getting to peer through a telescope into the far v reaches of the mathematical kingdom. The attendees of this seminar were a mot- ley crew of thinkers and Bob was our shepherd.
Recommended publications
  • Math 5853 Homework Solutions 36. a Map F : X → Y Is Called an Open
    Math 5853 homework solutions 36. A map f : X → Y is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map. 1. Give examples of continuous maps from R to R that are open but not closed, closed but not open, and neither open nor closed. open but not closed: f(x) = ex is a homeomorphism onto its image (0, ∞) (with the logarithm function as its inverse). If U is open, then f(U) is open in (0, ∞), and since (0, ∞) is open in R, f(U) is open in R. Therefore f is open. However, f(R) = (0, ∞) is not closed, so f is not closed. closed but not open: Constant functions are one example. We will give an example that is also surjective. Let f(x) = 0 for −1 ≤ x ≤ 1, f(x) = x − 1 for x ≥ 1, and f(x) = x+1 for x ≤ −1 (f is continuous by “gluing together on a finite collection of closed sets”). f is not open, since (−1, 1) is open but f((−1, 1)) = {0} is not open. To show that f is closed, let C be any closed subset of R. For n ∈ Z, −1 −1 define In = [n, n + 1]. Now, f (In) = [n + 1, n + 2] if n ≥ 1, f (I0) = [−1, 2], −1 −1 f (I−1) = [−2, 1], and f (In) = [n − 1, n] if n ≤ −2.
    [Show full text]
  • Stable Higgs Bundles on Ruled Surfaces 3
    STABLE HIGGS BUNDLES ON RULED SURFACES SNEHAJIT MISRA Abstract. Let π : X = PC(E) −→ C be a ruled surface over an algebraically closed field k of characteristic 0, with a fixed polarization L on X. In this paper, we show that pullback of a (semi)stable Higgs bundle on C under π is a L-(semi)stable Higgs bundle. Conversely, if (V,θ) ∗ is a L-(semi)stable Higgs bundle on X with c1(V ) = π (d) for some divisor d of degree d on C and c2(V ) = 0, then there exists a (semi)stable Higgs bundle (W, ψ) of degree d on C whose pullback under π is isomorphic to (V,θ). As a consequence, we get an isomorphism between the corresponding moduli spaces of (semi)stable Higgs bundles. We also show the existence of non-trivial stable Higgs bundle on X whenever g(C) ≥ 2 and the base field is C. 1. Introduction A Higgs bundle on an algebraic variety X is a pair (V, θ) consisting of a vector bundle V 1 over X together with a Higgs field θ : V −→ V ⊗ ΩX such that θ ∧ θ = 0. Higgs bundle comes with a natural stability condition (see Definition 2.3 for stability), which allows one to study the moduli spaces of stable Higgs bundles on X. Higgs bundles on Riemann surfaces were first introduced by Nigel Hitchin in 1987 and subsequently, Simpson extended this notion on higher dimensional varieties. Since then, these objects have been studied by many authors, but very little is known about stability of Higgs bundles on ruled surfaces.
    [Show full text]
  • 3D Holography: from Discretum to Continuum
    3D Holography: from discretum to continuum Bianca Dittrich (Perimeter Institute) V. Bonzom, B. Dittrich, to appear V. Bonzom, B.Dittrich, S. Mizera, A. Riello, w.i.p. ILQGS Sep 2015 1 Overview 1.Is quantum gravity fundamentally holographic? 2.Continuum: dualities for 3D gravity. 3.Regge calculus. 4.Computing the 3D partition function in Regge calculus. One loop correction. Boundary fluctuations. 2 1 1 S = d3xpgR d2xphK −16⇡G − 8⇡G Z Z@ 1 M β M = Ar(torus) r=1 = no ↵ dependence (0.217) sol −8⇡G | −4G 1 1 S = d3xpgR d2xphK −16⇡G − 8⇡G dt Z Z@ ln det(∆ m2)= 1 d3xK(t,1 x, x)M β(0.218)M − − 0 t = Ar(torus) r=1 = no ↵ dependence (0.217) Z Z sol −8⇡G | −4G 1 K = r dt Is quantum gravity fundamentallyln det(∆ m2)= holographic?1 d3xK(t, x, x) (0.218) i↵ − − t q = e Z0 (0.219)Z • In the last years spin1 foams have made heavily use of the K = r Generalized Boundary Formulation [Oeckl 00’s +, Rovelli, et al …] Region( bdry) i↵ (0.220) • Encodes dynamicsA into amplitudes associated to (generalized)q = e space time regions. (0.219) (0.221) bdry ( ) (0.220) ARegion bdry boundary -should satisfy (the dualized) Wheeler de Witt equation Hilbert space -gives no boundary (Hartle-Hawking) wave function • This looks ‘holographic’. However in the standard formulation one has the gluing axiom: ‘Gluing axiom’: essential to get more complicated from simpler amplitudes Amplitude for bigger region = glued from amplitudes for smaller regions This could be / is also called ‘locality axiom’.
    [Show full text]
  • Lecture II - Preliminaries from General Topology
    Lecture II - Preliminaries from general topology: We discuss in this lecture a few notions of general topology that are covered in earlier courses but are of frequent use in algebraic topology. We shall prove the existence of Lebesgue number for a covering, introduce the notion of proper maps and discuss in some detail the stereographic projection and Alexandroff's one point compactification. We shall also discuss an important example based on the fact that the sphere Sn is the one point compactifiaction of Rn. Let us begin by recalling the basic definition of compactness and the statement of the Heine Borel theorem. Definition 2.1: A space X is said to be compact if every open cover of X has a finite sub-cover. If X is a metric space, this is equivalent to the statement that every sequence has a convergent subsequence. If X is a topological space and A is a subset of X we say that A is compact if it is so as a topological space with the subspace topology. This is the same as saying that every covering of A by open sets in X admits a finite subcovering. It is clear that a closed subset of a compact subset is necessarily compact. However a compact set need not be closed as can be seen by looking at X endowed the indiscrete topology, where every subset of X is compact. However, if X is a Hausdorff space then compact subsets are necessarily closed. We shall always work with Hausdorff spaces in this course. For subsets of Rn we have the following powerful result.
    [Show full text]
  • Proper Maps and Universally Closed Maps
    Proper Maps and Universally Closed Maps Reinhard Schultz Continuous functions defined on compact spaces generally have special properties. For exam- ple, if X is a compact space and Y is a Hausdorff space, then f is a closed mapping. There is a useful class of continuous mappings called proper, perfect, or compact maps that satisfy many properties of continuous maps with compact domains. In this note we shall study a few basic properties of these maps. Further information about proper maps can be found in Bourbaki [B2], Section I.10), Dugundji [D] (Sections XI.5{6, pages 235{240), and Kasriel [K] (Sections 95 and 105, pages 214{217 and 243{247). There is a slight difference between the notions of perfect and compact mappings in [B2], [D], and [K] and the notion of proper map considered here. Specifically, the definitions in [D] and [K] include a requirement that the maps in question be surjective. The definition in [B2] is entirely different and corresponds to the notion of univer- sally closed map discussed later in these notes; the equivalence of this definition with ours for a reasonable class of spaces is proved both in [B2] and in these notes (see the section Universally closed maps). PROPER MAPS If f : X ! Y is a continuous map of topological spaces, then f is said to be proper if for each compact subset K ⊂ Y the inverse image f −1[K] is also compact. EXAMPLE. Suppose that A is a finite subset of Rn and f : Rn − A ! Rm is a continuous function such that for all a 2 A we have lim jf(x)j = lim jf(x)j = 1: x!a x!1 Then f is proper.
    [Show full text]
  • Combinatorial Topology
    Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n.
    [Show full text]
  • WEIGHT FILTRATIONS in ALGEBRAIC K-THEORY Daniel R
    November 13, 1992 WEIGHT FILTRATIONS IN ALGEBRAIC K-THEORY Daniel R. Grayson University of Illinois at Urbana-Champaign Abstract. We survey briefly some of the K-theoretic background related to the theory of mixed motives and motivic cohomology. 1. Introduction. The recent search for a motivic cohomology theory for varieties, described elsewhere in this volume, has been largely guided by certain aspects of the higher algebraic K-theory developed by Quillen in 1972. It is the purpose of this article to explain the sense in which the previous statement is true, and to explain how it is thought that the motivic cohomology groups with rational coefficients arise from K-theory through the intervention of the Adams operations. We give a basic description of algebraic K-theory and explain how Quillen’s idea [42] that the Atiyah-Hirzebruch spectral sequence of topology may have an algebraic analogue guides the search for motivic cohomology. There are other useful survey articles about algebraic K-theory: [50], [46], [23], [56], and [40]. I thank W. Dwyer, E. Friedlander, S. Lichtenbaum, R. McCarthy, S. Mitchell, C. Soul´e and R. Thomason for frequent and useful consultations. 2. Constructing topological spaces. In this section we explain the considerations from combinatorial topology which give rise to the higher algebraic K-groups. The first principle is simple enough to state, but hard to implement: when given an interesting group (such as the Grothendieck group of a ring) arising from some algebraic situation, try to realize it as a low-dimensional homotopy group (especially π0 or π1) of a space X constructed in some combinatorial way from the same algebraic inputs, and study the homotopy type of the resulting space.
    [Show full text]
  • Combinatorial Topology and Applications to Quantum Field Theory
    Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • Algebraic Topology
    Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .
    [Show full text]
  • Homology Groups of Homeomorphic Topological Spaces
    An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K.
    [Show full text]