The Effects of Land Use on Stream

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Land Use on Stream THE EFFECTS OF LAND USE ON STREAM COMMUNITIES IN HIGHLAND TROPICAL NIGERIA A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at the University of Canterbury, New Zealand by Danladi Mohammed Umar University of Canterbury 2013 Contents Acknowledgements ...........................................................................................................iv Abstract ..............................................................................................................................vi Chapter 1 General introduction ............................................................................................................ 1 Chapter 2 Illustrated guide to freshwater invertebrates of the Mambilla Plateau .............................. 24 Introduction ........................................................................................................................ 24 Methods.............................................................................................................................. 25 Freshwater invertebrates .................................................................................................... 29 Taxonomic classifications .................................................................................................. 31 Key to the aquatic macroinvertebrates of the Mambilla Plateau ....................................... 32 Chapter 3 Response of benthic invertebrates to a land use gradient in tropical highland streams ... 103 Introduction ...................................................................................................................... 103 Methods............................................................................................................................ 105 Results .............................................................................................................................. 109 Discussion ........................................................................................................................ 122 Chapter 4 Riparian land use and its relationship between benthos and litter decomposition in Nigerian highland stream .................................................................... 133 Introduction ...................................................................................................................... 133 Methods............................................................................................................................ 135 Results .............................................................................................................................. 140 Discussion ........................................................................................................................ 150 Chapter 5 Food web structure in tropical highland stream ecosystems ........................................... 158 Introduction ...................................................................................................................... 158 Methods............................................................................................................................ 161 Results .............................................................................................................................. 166 Discussion ........................................................................................................................ 174 Chapter 6 General discussion and conclusions................................................................................. 186 Summary of findings........................................................................................................ 186 ii | P a g e Appendix 1 Summary of mean physico-chemical and taxa data of 55 streams surveyed in my study on Mambilla Plateau. ..................................................................................................... 198 Appendix 2 Summary of invertebrates for 55 streams surveyed between October 2009 and March 2010 on Mambilla Plateau. .......................................................................... 213 Appendix 3 Mean taxa abundance of stream benthic invertebrates surveyed between October 2009 and March 2010 on Mambilla Plateau. .................................................... 233 Appendix 4 Density of consumers mostly collected from stones and wood in the nine case study streams on Mambilla Plateau. .............................................................................. 237 Appendix 5 Reprint of published article derived from chapter two; studies on the effects of light traps on dragonflies on Mambilla Plateau. ......................................................... 240 Appendix 6 Reprint of published article derived from chapter three; an application of the maximum convex sum algorithm in determining environmental variables that affect Nigerian highland stream benthic communities. ............................ 241 iii | P a g e Acknowledgments I would like to thank all those who helped me come this far. Naming all of them would not be easy due to time and space. I sincerely wish to appreciate the efforts of my supervisory team for their advice and guidance. I would like to thank my principal supervisor, Prof. Jon Harding who contributed in the development of the project concept after visiting the study site in Nigeria, gave me extra coaching in the field and laboratory analysis, reviewed the entire thesis and administered financial support. I thank Assoc. Prof. Hazel Chapman, my co-supervisor who contributed in many ways towards the success of this project. I would like to thank the Vice Chancellor of the Gombe State University, Prof. Abdullahi Mahadi who inspired me and also gave all the moral and financial backing to be able to accomplish this task. The contributions of Prof. M. J. Winterbourn were incredible for identifying the fauna of the Mambilla Plateau, and reviewing the manuscripts and giving useful comments. I appreciate all the support received from Prof. Paula Jameson the head of School of Biological Sciences, University of Canterbury. I wish to thank Prof. Angus McIntosh for all the support he rendered. Pete McHugh assisted in data analyses and a book in biostatics and Kate McHugh provided maps of the study sites. I thank Trent Hoover who provided the drawing of the Nigerian Crab in chapter two. I appreciate the contributions of Milen Marinov for drawing maps of study sites, and contributions towards manuscript preparation published in the International Dragonfly Fund 2012. I thank Matt Walters for publishing chapter two of this thesis as a photographic guide book. I wish to thank Mohammed Thaher and Tadao Takaoka for the collaborative research we had which led to the paper we jointly published. I wish to thank my fellow PhD colleagues; Francis Burdon who assisted in some of the analyses and Kristy Hogsden who provided many useful suggestions. I am grateful to Stephen Pohe who assisted in editing the manuscripts and to Hayley Stoddart and Elizabeth Graham who assisted in the isotope processing and analysis. I thank Linda Morris for sending me all the field gear needed for the field work. My thanks also go to Nicole Lauren-Manuera who secured the MAF and Bio-security permits to import samples in to New Zealand and for exporting samples to UC Davis stable isotope facilities in the USA and Nicki Judson who gave lots of administrative assistance. I wish to express my appreciation to Hamish Grieg, Jon O’Brien, Tanya Blakely, Helen Warburton, Amanda Klemmer, Robyn White, Aude Thierry, Lorna Deppe and Jonathan Bray. To all the members of the FERG past and present, I say a big thank you. My profound appreciation goes to Stephen Moore (Manaaki Whenua Landcare Research, New Zealand) who provided some of the photos used in chapter two. My appreciation goes to iv | P a g e Dr Mohammed Musa, Omar Yusuf and Abdullah Alshareef who have been very supportive. Others who helped during the field work in sampling all the streams include Misa Zubairu, Hammadu Adamu, Mairiga and the industrial training students attached to the Ngel Nyaki field station. Funding for this project came from Gombe State University, Educational Trust Fund Nigeria and the University of Canterbury New Zealand. I wish to thank my family for missing me all these years I have been studying in New Zealand. Finally, it has been tasking but rewarding experience studying the highland tropical streams. I have learnt a lot about these ecosystems and have gained a wide range of field, laboratory and analytical skills in the course of this project. I am thankful to have had such an opportunity. v | P a g e Abstract Globally, stream invertebrate communities have been shown to respond to habitat degradation as a result of land use changes. The effects of land use changes on stream communities have been well documented in temperate regions, however, their effects in the tropics are relatively unknown, particularly where land use activities can differ markedly (e.g., tea, maize and Eucalyptus plantations). To understand how land use affects tropical highland Nigerian stream communities, I surveyed 55 second and third order streams across four land use categories, ranging from continuous tropical montane forest to intensive crops/pasture. Streams were sampled in the dry season (October to March) for physico-chemical parameters (i.e., temperature, pH, conductivity, turbidity, current velocity, channel morphometry and riparian characteristics)
Recommended publications
  • Spezialpraktikum Aquatische Und Semiaquatische Heteroptera SS 2005
    Spezialpraktikum Aquatische und Semiaquatische Heteroptera SS 2005 Hinweise zum Bestimmungsschlüssel Das Skriptum ist für den Privatgebrauch bestimmt. Alle Angaben wurden nach bestem Wissen überprüft, Fehler sind aber nicht auszuschließen. Für Anmerkungen und Korrekturen bin ich sehr dankbar. Alle Abbildungen wurden der Literatur entnommen (siehe Literaturverzeichnis) und sind nicht Maßstabsgetreu, d.h. die Größenverhältnisse sind nicht korrekt wiedergegeben. Die Gesamtverbreitungsangaben wurden aus Aukema & Rieger (1995) entnommen und sind daher nicht aktuell. Sie geben aber einen guten Eindruck von der ungefähren Verbreitung der Arten. Die verwendeten zoogeographischen Angaben sind vorläufig und rein deskriptiv zu verstehen. Die Angabe der Bundesländervorkommen in Österreich erfolgt ohne Anspruch auf Vollständigkeit (Rabitsch unveröff., Stand 2005) Wolfgang Rabitsch Wien, Juni 2005 Version 1.1 (Juli 2005) Bestimmungsschlüssel der GERROMORPHA Österreichs Bestimmungsschlüssel der GERROMORPHA Österreichs (verändert nach Andersen 1993, 1995, 1996, Savage 1989, u.a.) Familien (Abb. 1) 1 Kopf mindestens doppelt so lang wie breit, Augen deutlich vom Vorderrand des Prothorax entfernt Hydrometridae - Kopf weniger als doppelt so lang wie breit, Augen berühren fast den Vorderrand des Prothorax 2 2 Coxae inserieren in der Körpermitte, Antennen 4-gliedrig, meist apter Mesoveliidae - Coxae inserieren lateral am Thorax 3 3 Antennen scheinbar 5-gliedrig, Segment 3-5 dünner als Segment 1-2, Ocellen vorhanden Hebridae - Antennen 4-gliedrig, alle Segmente
    [Show full text]
  • Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana
    Open Journal of Ecology, 2014, 4, 1061-1079 Published Online December 2014 in SciRes. http://www.scirp.org/journal/oje http://dx.doi.org/10.4236/oje.2014.417087 Species Composition and Diversity of Insects of the Kogyae Strict Nature Reserve in Ghana Rosina Kyerematen1,2*, Erasmus Henaku Owusu1, Daniel Acquah-Lamptey1, Roger Sigismund Anderson2, Yaa Ntiamoa-Baidu1,3 1Department of Animal Biology and Conservation Science, University of Ghana, Legon, Ghana 2African Regional Postgraduate Programme in Insect Science, University of Ghana, Legon, Ghana 3Centre for African Wetlands, University of Ghana, Legon, Ghana Email: *[email protected], [email protected], [email protected], [email protected], [email protected] Received 6 September 2014; revised 9 November 2014; accepted 21 November 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Kogyae Strict Nature Reserve, the only one in Ghana, was established to promote scientific re- search, particularly on how nature revitalizes itself after major disasters, and also to check the southward drift of the savannah grassland. This study presents the first comprehensive inventory of species composition and diversity of insects of the Reserve. Insects were surveyed between September 2011 and June 2012 to capture the end of the rainy season, the dry season and the peak of the wet season. Samples were taken from two sites within the Reserve, Dagomba and Oku using various sampling techniques including pitfall traps, malaise traps and sweep nets. Insect com- munities were characterized in terms of, 1) species richness estimators, 2) species richness, 3) Shannon-Weiner Index of Diversity, 4) Pielou’s evenness and 5) Bray-Curtis similarity.
    [Show full text]
  • The Sustainable Tree Crops Program (STCP) STCP Working Paper Series Issue 6 Biodiversity and Smallholder Cocoa Production Syste
    The Sustainable Tree Crops Program (STCP) STCP Working Paper Series Issue 6 Biodiversity and smallholder cocoa production systems in West Africa (Version: January 2008) By: Jim Gockowski1, Denis Sonwa2 1 International Institute of Tropical Agriculture (IITA), Accra, Ghana. 2 International Institute of Tropical Agriculture (IITA), Yaoundé, Cameroon International Institute of Tropical Agriculture The Sustainable Tree Crops Program (STCP) is a joint public-private research for development partnership that aims to promote the sustainable development of the small holder tree crop sector in West and Central Africa. Research is focused on the introduction of production, marketing, institutional and policy innovations to achieve growth in rural income among tree crops farmers in an environmentally and socially responsible manner. For details on the program, please consult the STCP website <http://www.treecrops.org/>. The core STCP Platform, which is managed by the International Institute of Tropical Agriculture (IITA), has been supported financially by the United States Agency for International Development (USAID), the World Cocoa Foundation (WCF) and the global cocoa industry. Additional funding for this paper has been provided by Mars Inc. About the STCP Working Paper Series: STCP Working Papers contain preliminary material and research results that are circulated in order to stimulate discussion and critical comment. Most Working Papers will eventually be published in a full peer review format. Comments on this or any other working paper are welcome and may be sent to the authors via the following e-mail address: [email protected] All working papers are available for download from the STCP website. Sustainable Tree Crops Program Regional Office for West and Central Africa IITA-Ghana, Accra Ghana.
    [Show full text]
  • Processing Heliogomphus Sinicus Decomposing Aleurites And
    OdonatologicalAbstracts 1980 (6185) DUDGEON, D., 1982. Aspects of the micro- distribution of insect macrobenthos in a forest (6182) MENDEL, H., 1980. Leicestershire drag- stream in Hong Kong. Arch. Hydrobiol. onflies. Trans. Leicester lit. phil. Soc. 71: 29- (Suppl.)64(2): 221-239. — (DeptZool., HuiOi -53. — (56 Carlford Close, Martlesham Heath, Chow Sci. Bldg, Univ. Hong Kong, Hong Ipswich, IPS 7TB, UK). Kong). The history of odonatol. research in Leices- The microdistribution of47 benthic insect taxa is from the width of shaded riffle of tershire, UK traced 1795 to present, across a reach Tai and a detailed catalogue, with distribution Po Kau Forest Stream, Hong Kong was of studied the of 1977. distri- maps, 20 spp. known to occur in the county during summer The (NW England) is presented. bution of Euphaea decorata is shown in a It the abundant diagram. was among most 1981 taxa studied. (6183) COIMBRA-FILHO, A.F., 1981. Animals 1983 predados ou rejeitados pelo saui-piranga, Le- 1983. ontopitecus r. rosalia (L., 1766) na sua area de (6186) CHAO, H.-f., Descriptions ofthree new of ocorrenca primitiva (Callitrichidae, Primates). species gomphine dragonflies from Xizang Revta brasil. Biol. 41(4): 717-731. — (Centro (Odonata: Gomphidae). J. Fujian agric. Coll. de Primatologia, Rio de Janeiro, Brazil). 12(4): 269-274. (Chin., with exhaustive Engl, — Biol. Orthemis ferruginea is listed among the food s.). (Inst. Control, Fujian Agric. Coll., items of the Golden Lion Tamarin, Leontopi- Fuzhou, Fujian, P. R. China). thecus rosalia. The spp. described are preserved in the Shanghai Inst. Ent., viz. Sinogomphus lepto- 1982 cercus sp.
    [Show full text]
  • The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
    International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr.
    [Show full text]
  • Ethiopia Food Economy Map
    Ethiopia Food Economy Map Tigray Central Lowland Northwest Highland Tigray Northern Highland Northwest Lowlands Wollo Northwest Watershed Wollo Central Highlands Tigray Central Highland Wollo Southern Highlands Wollo Northeast Plain Wollo Southeast Lowlands Western Lowlands' Harerge Highland West and Central Afar Rangeland Eastern Chat Complex Highlands Harerge Marginal Harerge Mixed Economy Rift Valley West and Central Marginal Mixed Crops Western Coffee Complex Ogaden Rangeland Enset Complex Southwest Marginal Rangeland Borana Rangeland Southwest Arable Enset Mixed Economy Enset Complex source: SCF-UK Ethiopia FEZ map explanations Ethiopia consists of a high massif (some 40% of the territory) and surrounding foothills and low plains which provide the frontiers with Sudan, Kenya and Somalia as well as the coastal hinterland. The country is nearly bisected by the Rift Valley from northeast to south-west. More than 90% of Ethiopians live above 1300 meters, the threshold for rain-fed agriculture. Altitude greatly influences temperature and rainfall. Ethiopians commonly distinguish between three general environments: - the highlands above about 2500 meters (dega) - the middle altitudes about 1600 - 2500 meters (weyna dega) - the agricultural lowlands below about 1600 meters (kolla) - the pastoral lowlands below about 1300 meters (kolla/bereha) Because Ethiopia has a rugged topography, people separated by only a few kilometers often live in very different ecologies, determined by altitude and even by aspect of slopes - one area may be in a rain-shadow in one year, another in the next. This means that production success and failure can show localized variations. The high plateaux are separated by ravines, abysses and gorges which have discouraged the creation of an extensive road network.
    [Show full text]
  • Dragonflies (Odonata: Anisoptera) of the Collection of the Instituto De Ciencias Naturales, Universidad Nacional De Colombia
    Boletín del Museo de Entomología de la Universidad del Valle 10(1): 37-41, 2009 37 DRAGONFLIES (ODONATA: ANISOPTERA) OF THE COLLECTION OF THE INSTITUTO DE CIENCIAS NATURALES, UNIVERSIDAD NACIONAL DE COLOMBIA Fredy Palacino-Rodríguez Instituto de Ciencias Naturales, Universidad Nacional de Colombia, A. A. 7495, Bogotá - Colombia; Correo electrónico: [email protected] RESUMEN Se provee un listado de los géneros y especies de Anisoptera (Insecta: Odonata) depositados en la colección entomológica del Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, sede Bogotá. Esta colección posee 2900 especímenes de Odonata recolectados desde 1940 en 27 departamentos del país. El 53% de los especímenes pertenece al suborden Anisoptera, representado por tres familias, Aeshnidae, Gomphidae y Libellulidae, 38 géneros y 91 especies; que constituyen el 80% de géneros y especies reportadas para el sub- orden en Colombia. Los géneros mejor representados en la colección son Erythrodiplax (37%), Uracis (15%) y Erythemis (8%). Se confirma la presencia en Colombia de Uracis siemensi Kirby, 1897, U. infumata (Ram- bur, 1842) y Zenithoptera viola Ris, 1910. Palabras clave: Odonata, libélula, Anisoptera, Neotrópico. SUMMARY A list of genera and species of Anisoptera (Insecta: Odonata) deposited in the entomology collection of the Instituto de Ciencias Naturales, Universidad Nacional de Colombia in Bogotá is given. This collection holds 2900 specimens of Odonata which have been collected since 1940 across 27 departments of the country. More than a half of the specimens are Anisoptera (53%) and these are represented by three families Aeshnidae, Gomphidae, and Libellulidae, 38 genera and 91 species. These numbers constitute 80% of the genera and species of the suborder reported from Colombia.
    [Show full text]
  • By the Lepidoptera (Eg Patterns Are Frequently Used
    Odonatologica 15(3): 335-345 September I, 1986 A survey of some Odonata for ultravioletpatterns* D.F.J. Hilton Department of Biological Sciences, Bishop’s University, Lennoxville, Quebec, J1M 1Z7, Canada Received May 8, 1985 / Revised and Accepted March 3, 1986 series of 338 in families A museum specimens comprising spp. 118 genera and 16 were photographed both with and without a Kodak 18-A ultraviolet (UV) filter. These photographs revealed that only Euphaeaamphicyana reflected UV from its other wings whereas all spp. either did not absorb UV (e.g. 94.5% of the Coenagri- did In with flavescent. onidae) or so to varying degrees. particular, spp. orange or brown UV these wings (or wing patches) exhibited absorption for same areas. However, other spp. with nearly transparent wings (especially certain Gomphidae) Pruinose also had strong UV absorption. body regions reflected UV but the standard acetone treatment for color preservation dissolves thewax particles of the pruinosity and destroys UV reflectivity. As is typical for arthropod cuticle, non-pruinosebody regions absorbed UV and this obscured whatever color patterns might otherwise be visible without the camera’s UV filter. Frequently there is sexual dimorphismin UV and and these role various of patterns (wings body) differences may play a in aspects mating behavior. INTRODUCTION Considerable attention has been paid to the various ultraviolet (UV) patterns exhibited by the Lepidoptera (e.g. SCOTT, 1973). Studies have shown (e.g. RUTOWSKI, 1981) that differing UV-reflectance patterns are frequently used as visual in various of behavior. few insect cues aspects mating Although a other groups have been investigated for the presence of UV patterns (HINTON, 1973; POPE & HINTON, 1977; S1LBERGL1ED, 1979), little informationis available for the Odonata.
    [Show full text]
  • A Checklist of North American Odonata
    A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2009 Edition (updated 14 April 2009) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2009 Edition (updated 14 April 2009) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009. Copyright © 2009 Dennis R. Paulson and Sidney W. Dunkle 2009 edition published by Jim Johnson Cover photo: Tramea carolina (Carolina Saddlebags), Cabin Lake, Aiken Co., South Carolina, 13 May 2008, Dennis Paulson. 1 1724 NE 98 Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 457 species of North American Odonata considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approxi- mate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION Before the first edition of this checklist there was no re- Table 1. The families of North American Odonata, cent checklist of North American Odonata. Muttkows- with number of species. ki (1910) and Needham and Heywood (1929) are long out of date. The Zygoptera and Anisoptera were cov- Family Genera Species ered by Westfall and May (2006) and Needham, West- fall, and May (2000), respectively, but some changes Calopterygidae 2 8 in nomenclature have been made subsequently. Davies Lestidae 2 19 and Tobin (1984, 1985) listed the world odonate fauna Coenagrionidae 15 103 but did not include type localities or details of distri- Platystictidae 1 1 bution.
    [Show full text]
  • Multilocus Phylogeny of the Crocidura Poensis Species Complex
    Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla) Influences of the palaeoclimate on its diversification and evolution Violaine Nicolas, François Jacquet, Rainer Hutterer, Adam Konečný, Stephane Kan Kouassi, Lies Durnez, Aude Lalis, Marc Colyn, Christiane Denys To cite this version: Violaine Nicolas, François Jacquet, Rainer Hutterer, Adam Konečný, Stephane Kan Kouassi, et al.. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla) Influences of the palaeoclimate on its diversification and evolution. Journal of Biogeography, Wiley, 2019, 46 (5), pp.871-883. 10.1111/jbi.13534. hal-02089031 HAL Id: hal-02089031 https://hal-univ-rennes1.archives-ouvertes.fr/hal-02089031 Submitted on 18 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multi-locus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): influences of the paleoclimate on its diversification and evolution Running title: Phylogeography of Crocidura poensis complex Violaine Nicolas1, François
    [Show full text]
  • Opsin Duplication and Subfunctionalization for Short-Wavelength Sensitivity in Jewel Beetles (Coleoptera: Buprestidae) Nathan P
    Lord et al. BMC Evolutionary Biology (2016) 16:107 DOI 10.1186/s12862-016-0674-4 RESEARCH ARTICLE Open Access A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae) Nathan P. Lord1*, Rebecca L. Plimpton2, Camilla R. Sharkey1, Anton Suvorov1, Jonathan P. Lelito3, Barry M. Willardson2 and Seth M. Bybee1 Abstract Background: Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the “blue” region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA- seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes—ultraviolet, short-wavelength, and long-wavelength. Results: All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression.
    [Show full text]
  • Lepidoptera: Geometridae, Ennominae)
    Über einige Puppen der Spanner aus der Tribus Ennomini (Lepidoptera: Geometridae, Ennominae) J. PatoCka PATOCKA, J., 1992. ON SOME GEOMETRID-PUPAE OF THE TRIBE ENNOMINI (LEPIDOPTERA: GEO¬ METRIDAE, ENNOMINAE). - ENT BER., ÄMST. 52 (12): 171-176. Abstract: Seven species from six genera of Central and Western European geometrid-pupae of the tribe Ennomini are described and figured. Some biological data are added. Institut für Waldökologie der SAW, CS-960 53 Zvolen, CSFR. Die vorliegende Arbeit knüpft an die zwei (Abb. 1). Thorakales Spiraculum unauffällig, früheren des Verfassers (Patocka, 1985, 1986), spaltenförmig (Abb. 10). Dorsalrinne mit etwa in welchen die Mehrzahl der mittel- und west¬ 10 abgerundeten, tomentösen Kaudalausläu¬ europäischen Puppen der Tribus Ennomini fern (Abb. 15). Lateraleinschnitt tief, lang, (Geometridae) beschrieben und abgebildet ist. spitz (Abb. 14). Kremaster ventral mit starken Weitere Angaben über die Puppen dieser Tri¬ Basalhöckern und einer Basalmulde dazwi¬ bus findet man in Khotko (1977). Eine Gat¬ schen, im Dorsalsicht kurz, Seiten gewölbt, tungstabelle für die Puppen der Geometridae Ende zugespitzt, Basalhälfte wirr gefurcht. bringt Patocka (im Druck). Die Puppen der Häkchen D2 dicker, wenig langer als die kanadischen Ennominae bearbeitete McGuf- übrigen (Abb. 14, 15). fin (1972-1981). Verpuppung in einem Erdkokon in der Bo¬ Das System und die Nomenklatur folgen denstreu. Raupe polyphag, bevorzugt Vacci- Leraut (1980), die morphologische Terminolo¬ nium spp.. In lichten Wäldern verbreitet. gie Mosher (1916) und McGuffin (1972-1981). Gattung Epione Duponchel Gattung Cepphis Hübner Zum Unterschied von den Faltern, unterschei¬ Diese Gattung, obzwar in die Ennomini den sich die Puppen von Cepphis stark, zum gehörend, ist puppenmorphologisch den Cam- Beispiel durch schlankere Form, den Glanz, paeini am ähnlichsten.
    [Show full text]