PCDR Western Asturias Octopus Fishery

Total Page:16

File Type:pdf, Size:1020Kb

PCDR Western Asturias Octopus Fishery PUBLIC COMMENT DRAFT REPORT (PCDR) 10 September 2015 Western Asturias Octopus Traps fishery of Artisanal Cofradias CLIENT: COFRADIA DE PESCADORES DE PUERTO DE VEGA (ASTURIAS) CAB: BUREAU VERITAS IBERIA Edificio Caoba Valportillo Primera 22-24. Pol. Ind. La Granja ALCOBENDAS MADRID 28108 AUTHORS: Angel F. González González Gonzalo Macho Rivero Jacobo de Novoa Macarena Garcia Silva Table of Contents Glossary................................................................................................................................ 4 1 Executive Summary ....................................................................................................... 6 2 Authorship and Peer Reviewers ..................................................................................... 8 3 Description of the Fishery ............................................................................................ 11 3.1 Unit of Assessment (UoA) and Scope of Certification Sought ............................... 11 3.1.1 UoA and Proposed Unit of Certification (UoC) ............................................... 11 3.1.2 Total Allowable Catch (TAC) and Catch Data ................................................ 13 3.2 Overview of the fishery ......................................................................................... 14 3.3 Principle One: Target Species Background ........................................................... 16 3.4 Principle Two: Ecosystem Background ................................................................. 27 3.5 Principle Three: Management System Background............................................... 35 4 Evaluation Procedure ................................................................................................... 44 4.1 Harmonised Fishery Assessment .......................................................................... 44 4.2 Previous assessments .......................................................................................... 44 4.3 Assessment Methodologies .................................................................................. 44 4.4 Evaluation Processes and Techniques ................................................................. 44 4.4.1 Site Visits ....................................................................................................... 44 Tuesday, 2 February 2015 .............................................................................................. 45 Wednesday, 3 February 2015 ........................................................................................ 45 Thrusday, 4 February 2015 ............................................................................................ 46 4.4.2 Consultations ................................................................................................. 46 4.4.3 Evaluation Techniques ................................................................................... 48 5 TRACEABILITY ........................................................................................................... 53 5.1 Eligibility Date ....................................................................................................... 53 5.2 Traceability within the Fishery ............................................................................... 53 5.3 Eligibility to Enter Further Chains of Custody ........................................................ 55 6 Evaluation Results ....................................................................................................... 57 6.1 Principle Level Scores .......................................................................................... 57 6.2 Summary of PI Level Scores ................................................................................. 57 6.3 Summary of Conditions ......................................................................................... 58 7 References .................................................................................................................. 59 8 Appendix 1. Scoring and Rationales ............................................................................ 65 Appendix 1.1 Performance Indicator Scores and Rationale .......................................... 65 Appendix 1.2 Risk Based Framework (RBF) Outputs ........................................................ 131 Appendix 1.2.1 Consequence Analysis (CA) for Principle 1 ....................................... 131 Appendix 1.2.2 Productivity-Susceptibility Analysis (PSA) ......................................... 133 Public Comment Draft Report: Western Asturias Octopus Traps fishery of Artisanal Cofradias page 2 10 September 2015 Appendix 1.2.3 Consequence Spatial Analysis (CSA) ................................................ 141 Appendix 1.2.4 Scale Intensity Consequence Analysis (SICA) ................................... 146 Appendix 1.3 Conditions ................................................................................................ 147 8.1 Appendix 2. Peer Review Reports ...................................................................... 155 Public Comment Draft Report: Western Asturias Octopus Traps fishery of Artisanal Cofradias page 3 10 September 2015 Glossary Blim Limit biomass reference point, below which recruitment is expected to be impaired. Bmsy Biomass achieving maximum sustainable yield BOPA Official Gazette of the Principality of Asturias Bpa Precautionary reference point for spawning stock biomass CA Consequence Analysis CITES Convention on International Trade in Endangered Species of Flora and Fauna CEP Fisheries Experimentation Centre (Centro Experimentación Pesquera) CFP Common Fisheries Policy CMS Convention on Migratory Species CPUE Catch per unit effort DGPM Directorate General of Maritime Fisheries (Dirección General de Pesca Marítima) EC European Commission EEZ Exclusive Economic Zone ETP Endangered, threatened and protected species EU European Union F Fishing Mortality FCR Fishery Certification Requirements FAO Food and Agriculture Organisation of the UN Flim Limit reference point for fishing mortality that is expected to drive the stock to the biomass limit FMSY Fishing mortality achieving maximum sustainable yield Fpa Precautionary reference point of fishing mortality expected to maintain the SSB at the precautionary reference point HCR Harvest Control Rules IEO Spanish Institute of Oceanography (Instituto Español de Oceanografía) MAGRAMA Ministry of Agriculture, Food, and the Environment (Ministerio de Agricultura, Alimentación, y Medio Ambiente) MP Management Plan MSC Marine Stewardship Council MSE Management Strategy Evaluation MSY Maximum Sustainable Yield P1 MSC Principle 1 Public Comment Draft Report: Western Asturias Octopus Traps fishery of Artisanal Cofradias page 4 10 September 2015 P2 MSC Principle 2 P3 MSC Principle 3 PSA Productivity Susceptibility Analysis RBF MSC’s risk based framework SGP General Secretariat for Fishing (Secretaría General de Pesca) TAC Total Allowable Catch UoA Unit of Assessment UoC Unit of Certification Public Comment Draft Report: Western Asturias Octopus Traps fishery of Artisanal Cofradias page 5 10 September 2015 1 Executive Summary This Prelimary Draft Report provides details of the MSC assessment of the fishery process for the Western Asturias Octopus Traps fishery of Artisanal Cofradias prepared by the team and the CAB provided to the client. The client group covered by the certificate are four guilds from Asturias named: Cofradía Puerto de Vega, Ortiguera, Viavélez and Tapia de Casariego. Additionally, the 27 vessels included in the Octopus Manament Plan members of the refered fishing guilds. Henceforth, the term client will be used to refer to them. The audit team that conducted the assessment against to MSC standard was comprised of the following members from the Certification Body, Bureau Veritas Iberia: Macarena Garcia Silva, Seafood auditor and Scheme Manager for MSC fisheries from Bureau Veritas Iberia, in the role of project coordinator and team leader. Jacobo de Novoa, Director of the Fishery and Aquaculture Department, as team member in charge of the traceability section and to support the team leader. The expert team, selected for their stock assessment, ecosystem interactions, and fishery management experience, comprised Ángel Francisco González González as expert assessor under Principle 1 and 2 and Gonzalo Macho Rivero as expert assessor under Principle 2 and 3. The assessment process began in December 2014.Public notice regarding to the launch of the MSC Certification Programme for the fishery was published the 11 th of December 2014 . The announcement and timeline were published on the MSC website to report all the steps carried out to get the MSC certification. The announcement template included the names and CVs of the assessment team members, the use of the default assessment tree included in V 2.0 of the MSC Fishery Certification Requirements (FCR). The tasks schedule, is identified as Preliminary Assessment timeline and was also published at first. One of the main steps when assessing fishery compliance with the International MSC Standard involves meeting with the stakeholders in order to gather all the relevant information and become aware of any potential issues. The site was performed for the week starting February 2, 2015 with selected organisations and individuals with a direct interest in this fishery. The stakeholders involved in the fishery were contacted by telephone and dropping an email to schedule the site visit to
Recommended publications
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Stylet Elemental Signatures Indicate Population Structure in a Holobenthic Octopus Species, Octopus Pallidus
    Vol. 371: 1–10, 2008 MARINE ECOLOGY PROGRESS SERIES Published November 19 doi: 10.3354/meps07722 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus Zoë A. Doubleday1,*, Gretta T. Pecl1, Jayson M. Semmens1, Leonid Danyushevsky2 1Marine Research Laboratories, Tasmanian Aquaculture & Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia 2Centre for Ore Deposit Research, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia ABSTRACT: Targeted trace elemental analysis was used to investigate the population structure and disper- sal patterns of the holobenthic octopus species Octopus pallidus (Hoyle, 1885). Multi-elemental signatures within the pre-hatch region of the stylet (an internal ‘shell’) were used to determine the common origins and levels of connectivity of individuals collected from 5 locations in Tasmania. To determine whether hatchling elemental signatures could be used as tags for natal ori- gin, hatchling stylets from 3 of the 5 locations were also analysed. We analyzed 12 elements using laser ablation inductively-coupled plasma-mass spectrometry (LA- ICPMS). Of the 12 elements, 7 were excellent spatial discriminators. There was evidence of high-level struc- turing with distinct groupings between all sites (the 2 closest being 85 km apart) within the adult O. pallidus Octopus pallidus, a holobenthic species found in south-east population, suggesting that all adults had hatched in or Australia near their respective collection sites. The hatchling sig- Photo: Stephen Leporati natures showed significant spatial variation, and a high percentage of individuals could successfully be traced back to their collection locations.
    [Show full text]
  • Cephalopoda: Octopodidae): the Smallest Southwestern Atlantic Octopod, Found in Sea Debris
    A new species of pygmy Paroctopus (Cephalopoda: Octopodidae): the smallest southwestern Atlantic octopod, found in sea debris Tatiana S. Leite ( [email protected] ) Universidade Federal de Santa Catarina Centro de Ciencias Biologicas https://orcid.org/0000-0001-9117-9648 Erica A.G. Vidal Universidade Federal do Parana Setor de Ciencias da Terra Françoise Dantas Lima Universidade Federal do Rio Grande do Norte Centro de Biociencias Sergio M.Q. Lima Universidade Federal do Rio Grande do Norte Centro de Biociencias Ricardo M Dias Universidade Federal do Sul da Bahia Giulia A. Giuberti Universidade Federal do Estado do Rio de Janeiro Davi De Vasconcellos Universidade Federal do Rio Grande Jennifer A. Mather University of Lethbridge Manuel Haimovici Universidade Federal do Rio Grande Original Paper Keywords: Paroctopus, octopus Posted Date: January 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-172910/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Marine Biodiversity on July 27th, 2021. See the published version at https://doi.org/10.1007/s12526-021-01201-z. Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js Page 1/27 Abstract The new species, Paroctopus cthulu sp. nov. Leite, Haimovici, Lima and Lima, was recorded from very shallow coastal waters on sandy/muddy and shelter- poor bottoms with natural and human-origin debris. It is a small octopus, adults are less than 35 mm mantle length (ML) and weigh around 15 g. It has short to medium sized arms, enlarged suckers on the arms of both males and females, large posterior salivary glands (25 %ML), a relatively large beak (9 % ML) and medium to large mature eggs (3.5 to > 9 mm).
    [Show full text]
  • Octopus Consciousness: the Role of Perceptual Richness
    Review Octopus Consciousness: The Role of Perceptual Richness Jennifer Mather Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] Abstract: It is always difficult to even advance possible dimensions of consciousness, but Birch et al., 2020 have suggested four possible dimensions and this review discusses the first, perceptual richness, with relation to octopuses. They advance acuity, bandwidth, and categorization power as possible components. It is first necessary to realize that sensory richness does not automatically lead to perceptual richness and this capacity may not be accessed by consciousness. Octopuses do not discriminate light wavelength frequency (color) but rather its plane of polarization, a dimension that we do not understand. Their eyes are laterally placed on the head, leading to monocular vision and head movements that give a sequential rather than simultaneous view of items, possibly consciously planned. Details of control of the rich sensorimotor system of the arms, with 3/5 of the neurons of the nervous system, may normally not be accessed to the brain and thus to consciousness. The chromatophore-based skin appearance system is likely open loop, and not available to the octopus’ vision. Conversely, in a laboratory situation that is not ecologically valid for the octopus, learning about shapes and extents of visual figures was extensive and flexible, likely consciously planned. Similarly, octopuses’ local place in and navigation around space can be guided by light polarization plane and visual landmark location and is learned and monitored. The complex array of chemical cues delivered by water and on surfaces does not fit neatly into the components above and has barely been tested but might easily be described as perceptually rich.
    [Show full text]
  • Comparison of Population Structuring in Sympatric Octopus Species with and Without a Pelagic Larval Stage
    Vol. 486: 203–212, 2013 MARINE ECOLOGY PROGRESS SERIES Published July 12 doi: 10.3354/meps10330 Mar Ecol Prog Ser Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage Kaitlyn L. Higgins1,*, Jayson M. Semmens2, Zoë A. Doubleday3, Christopher P. Burridge1 1School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia 2Fisheries, Aquaculture and Coasts Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia 3Southern Seas Ecology Laboratories, School of Earth and Environmental Sciences, University of Adelaide, DX650 418, South Australia 5005, Australia ABSTRACT: An understanding of the influence of life history on dispersal capability is central to a range of disciplines within ecology and evolution. While studies have investigated this question by contrasting spatial population structuring in taxa that differ in life history, in the vast majority such comparisons differ in space and time, and therefore environmental factors may have con- tributed. Here, population structure of a holobenthic (i.e. direct developing) octopus, Octopus pal- lidus, was investigated genetically. This was compared to existing genetic data for a co-occurring merobenthic (i.e. planktonic larvae) species, Macroctopus maorum. Greater spatial genetic struc- turing was evident in O. pallidus than M. maorum. Patterns were consistent with isolation by dis- tance in O. pallidus, but appeared related to oceanographic circulation systems in M. maorum, suggesting distance-dependent adult dispersal and current-mediated larval dispersal, respec- tively. Genetic population structuring in O. pallidus also largely corroborated inferences based on stylet microchemistry, indicating the utility of these environmental signatures.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Feeding Ecology of Enteroctopus Megalocyathus (Cephalopoda: Octopodidae) in Southern Chile Christian M
    Journal of the Marine Biological Association of the United Kingdom, 2008, 88(4), 793–798. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408001227 Printed in the United Kingdom Feeding ecology of Enteroctopus megalocyathus (Cephalopoda: Octopodidae) in southern Chile christian m. ibanez~ 1 and javier v. chong2 1Instituto de Ecologı´a y Biodiversidad, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, PO Box 563, Santiago, Chile, 2Departamento de Ecologı´a Costera, Facultad de Ciencias, Universidad Cato´lica de la Santı´sima Concepcio´n, P.O. BOX 297, Concepcio´n, Chile In this research we studied the diet of Enteroctopus megalocyathus from three principal locations of the octopus fishery (Ancud, Quello´n and Melinka) in southern Chile. The gastric contents of 523 individuals, collected between October 1999 and September 2000, were examined and statistically analysed. Diet composition was described using detrended correspon- dence analysis and analysed as a function of predator gender, body size and fishing area. Food items were found in ~50% of the octopuses examined and a total of 14 prey items were recognized. The diet of E. megalocyathus consisted primarily in brachyuran and anomuran crustaceans, fish and conspecifics. The diet differed in composition between fishing zones and mantle length of the specimens and size of octopuses varied between locations. After adjusting for octopus mantle length, diet composition was found to be different between fishing areas. Large octopuses fed on large crabs at Ancud, while in Quello´n and Melinka small octopuses fed mainly on small crustaceans. There were no differences in prey composition between the gender and the size of octopuses was a better predictor of the variance in the diet composition (16%) than the fishing zone (6%).
    [Show full text]
  • Eight Arms, with Attitude
    The link information below provides a persistent link to the article you've requested. Persistent link to this record: Following the link below will bring you to the start of the article or citation. Cut and Paste: To place article links in an external web document, simply copy and paste the HTML below, starting with "<a href" To continue, in Internet Explorer, select FILE then SAVE AS from your browser's toolbar above. Be sure to save as a plain text file (.txt) or a 'Web Page, HTML only' file (.html). In Netscape, select FILE then SAVE AS from your browser's toolbar above. Record: 1 Title: Eight Arms, With Attitude. Authors: Mather, Jennifer A. Source: Natural History; Feb2007, Vol. 116 Issue 1, p30-36, 7p, 5 Color Photographs Document Type: Article Subject Terms: *OCTOPUSES *ANIMAL behavior *ANIMAL intelligence *PLAY *PROBLEM solving *PERSONALITY *CONSCIOUSNESS in animals Abstract: The article offers information on the behavior of octopuses. The intelligence of octopuses has long been noted, and to some extent studied. But in recent years, play, and problem-solving skills has both added to and elaborated the list of their remarkable attributes. Personality is hard to define, but one can begin to describe it as a unique pattern of individual behavior that remains consistent over time and in a variety of circumstances. It will be hard to say for sure whether octopuses possess consciousness in some simple form. Full Text Word Count: 3643 ISSN: 00280712 Accession Number: 23711589 Persistent link to this http://0-search.ebscohost.com.library.bennington.edu/login.aspx?direct=true&db=aph&AN=23711589&site=ehost-live
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Targeted Review of Biological and Ecological Information from Fisheries Research in the South East Marine Region
    TARGETED REVIEW OF BIOLOGICAL AND ECOLOGICAL INFORMATION FROM FISHERIES RESEARCH IN THE SOUTH EAST MARINE REGION FINAL REPORT B. D. Bruce, R. Bradford, R. Daley, M. Green and K. Phillips December 2002 Client: National Oceans Office Targeted review of biological and ecological information from fisheries research in the South East Marine Region Final Report B. D. Bruce, R. Bradford, R. Daley M. Green and K. Phillips* CSIRO Marine Research, Hobart * National Oceans Office December 2002 2 Table of Contents: Table of Contents:...................................................................................................................................3 Introduction.............................................................................................................................................5 Objective of review.............................................................................................................................5 Structure of review..............................................................................................................................5 Format.................................................................................................................................................6 General ecological/biological issues and uncertainties for the South East Marine Region ....................9 Specific fishery and key species accounts ............................................................................................10 South East Fishery (SEF) including the South East Trawl
    [Show full text]
  • Mating Behavior of Abdopus Aculeatus (D’Orbigny 1834) (Cephalopoda: Octopodidae) in the Wild
    Mar Biol DOI 10.1007/s00227-008-0930-2 RESEARCH ARTICLE Mating behavior of Abdopus aculeatus (d’Orbigny 1834) (Cephalopoda: Octopodidae) in the wild Christine L. HuVard · Roy L. Caldwell · Farnis Boneka Received: 1 March 2007 / Accepted: 8 February 2008 © Springer-Verlag 2008 Abstract The mating system of Abdopus aculeatus incor- than did #T, while $GA spent more than twice as much time porates sneaker matings, mate guarding, sex-speciWc body per day in copula than did other females. Sneaker copula- patterns, frequent copulations, and male–male competition tions lasted longer than those by males adopting other tactics. for mates, making it more similar to that of aggregating deca- Mate-guarding was an eVective and important tactic used by pod cephalopods than any previously known octopus social males to temporarily monopolize mating with apparently system. Large male–female A. aculeatus occupy ‘Adjacent’ non-selective females. Males demonstrated clear pre-copula- (GA) dens and copulate frequently in mate-guarding situa- tory mate choice by guarding and mating repeatedly with tions over successive days. Nearby individuals copulate in large females (typically $GA). While foraging alone away ‘Temporary guarding’ (GT) and ‘Transient’ (T; non-guard- from the den, #G procured ‘Transient’ copulations with ing) situations, the latter of which can involve ‘Sneaker’ (S) unguarded females. However, mate-guarding reduced the mating. In a focal animal study of these octopuses in the wild amount of time #G were alone and may impede their ability (Sulawesi, Indonesia) we addressed the hypotheses that they to seek out new mates. Low-copulation rates by $T, the demonstrate: (1) precopulatory mate choice, (2) diVerential smallest female tactic on average, may reXect this trade-oV copulation rates by individuals employing diVerent mating between mate preference and mate-searching by males, or tactics, and (3) distant sex identiWcation.
    [Show full text]