Climate Change at the Pleistocene-Holocene Boundary in the Pacific Orn Thwest: a Comparison of Proxy Datasets and the Archaeologicial Record Tiffany J

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change at the Pleistocene-Holocene Boundary in the Pacific Orn Thwest: a Comparison of Proxy Datasets and the Archaeologicial Record Tiffany J Eastern Washington University EWU Digital Commons EWU Masters Thesis Collection Student Research and Creative Works 2012 Climate change at the Pleistocene-Holocene boundary in the Pacific orN thwest: a comparison of proxy datasets and the archaeologicial record Tiffany J. Fulkerson Eastern Washington University Follow this and additional works at: http://dc.ewu.edu/theses Part of the Archaeological Anthropology Commons, History of Art, Architecture, and Archaeology Commons, and the Paleobiology Commons Recommended Citation Fulkerson, Tiffany J., "Climate change at the Pleistocene-Holocene boundary in the Pacific orN thwest: a comparison of proxy datasets and the archaeologicial record" (2012). EWU Masters Thesis Collection. 64. http://dc.ewu.edu/theses/64 This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact [email protected]. CLIMATE CHANGE AT THE PLEISTOCENE-HOLOCENE BOUNDARY IN THE PACIFIC NORTHWEST: A COMPARISON OF PROXY DATASETS AND THE ARCHAEOLOGICAL RECORD A Thesis Presented To The Departments of Anthropology and Geography, History Eastern Washington University Cheney, Washington In Partial Fulfillment of the Requirements for the Degree Master of Arts By Tiffany J. Fulkerson August 2012 ii iii iv Abstract The relationship between climate change at the Pleistocene-Holocene Boundary (ca. 12,600-10,200 cal B.P.) and cultural responses to attendant shifts in the environment remains a vexing issue for archaeologists. This study compiles and analyzes glacial, palynological, faunal, and stratigraphic/geomorphological proxy datasets for climate change in the Pacific Northwest of North America and compares them to the coeval archaeological record. The primary purpose of this exercise is to consider the potential ways in which climate change at the Pleistocene-Holocene Boundary affected cultural development for Late Paleoindian-Early Archaic peoples in the Pacific Northwest. Results indicate that climatic and environmental change at this interval was rapid or abrupt, and of a magnitude that likely produced varying adaptational responses by peoples of different cultural traditions who appear across the region at this period. Transformations in tools and technology, shifts in dietary habits, migration and regionalization, and trade intensification are all elements of Late Paleoindian-Early Archaic cultural responses to rapid climate change. v Acknowledgements The completion of this research would not have been possible without the assistance and support of many people. First and foremost, I would like thank my advisor, Jerry R. Galm, for providing invaluable knowledge, experience, and inspiration throughout the entirety of my graduate career. I would like to extend my gratitude and thanks to members of my committee, Robert R. Sauders and Paul Victor, for offering me insight and feedback on this study. Special thanks go out to Stan Gough, Rebecca Stevens, Dana Komen, and the entire staff of Archaeological and Historical Services for granting me years of guidance, professional support, laboratory facilities, and valuable resources. Thanks are also due to my fellow colleague and former classmate, Jamie M. Litzkow, for editing this research and providing years of advice and novel conversation. I would also like to thank Stephen Westleigh for offering understanding and support in the completion of this study. Finally, I am forever indebted to my parents, Rosa and Steve Jasso, for bestowing on me a lifetime of encouragement, love, patience, and limitless guidance. vi Table of Contents Abstract………………………………………………………………........................... ..iv Acknowledgements ………………………………………………………………….…..v List of Figures………………………………………………………………………........ix List of Tables…………………………………………………………………………......x Chapter 1: Introduction …………………………………………………………….......1 Statement of Problem………………………………………………………….....1 Methodology……………………………………………………………………..4 Chapter 2: Climatic and Environmental Background …………………………….. .... 6 Introduction…………………………………………………………………...…6 Paleoclimates and Paleoenvironments of the Pleistocene and Holocene………………………………………………………………...….. .7 Early-Late Pleistocene: 2.5 Million Years Ago-ca. 11,400 cal B.P………………………………….... 7 Pleistocene-Holocene Boundary: ca. 12,600-10,200 cal B.P…………….....8 Early Holocene: 11,400-9000 cal B.P……………………………………......9 Mid-Holocene Cold Reversal: ca. 8200 cal B.P………………………….....11 Evidence for Abrupt or Rapid Climate Change at the Pleistocene-Holocene Boundary………….…………………………………...... 12 Forcing Mechanisms for Climate Change……………………………………... .13 Discussion……………………………………………………….........................14 Chapter 3: Glaciological Proxy Datasets for Climate Change …............................. .. 15 Introduction…………………………………………........................................ .. .15 Late Pleistocene-Younger Dryas Glaciation…………………………………... ... 15 Cascade Range………………………………………….........................18 Fraser Lowland………………………………………………………... ..20 Northern Rocky Mountains………………………………………..….. ..... 20 Early Holocene-Mid-Holocene Glaciation…………………………………..….21 Cascade Range…………………………………………............................. 22 Wallowa Mountains…………………………………………................ .... 24 Northern Rocky Mountains………………………………………….... ..... 24 Discussion…………………………………………………………………..….. .24 vii Chapter 4: Palynological Proxy Datasets for Climate Change …………………....... 27 Introduction…………………………………………………………………….27 Pollen Record During the Late Pleistocene: Last Glacial………………………28 Pollen Record During the Late Pleistocene: Younger Dryas Chronozone……………………………………………………......................... ... 36 Puget Lowland…………………………….............................................37 Cascade Range……………………………............................................ ... 38 Okanogan Lowland and Highland ……………………………...............38 Columbia Plateau …………………………….........................................39 Northern Rocky Mountains ……………………………......................... .40 River Valleys of the Northern Rocky Mountains …………………….... .41 Pollen Record during the Early Holocene……………………………………....42 Puget Lowland…………………………….............................................44 Cascade Range…………………………….............................................45 Okanogan Lowland and Highland ……………………………...............45 Columbia Plateau …………………………….........................................46 Northern Rocky Mountains ……………………………........................ ... 47 River Valleys of the Northern Rocky Mountains………………..………... 48 Palynological Events Associated with the 8200 cal B.P. Cooling Event………………………………………………………….………... 49 Discussion………………………………………………………........................50 Chapter 5: Faunal Proxy Datasets for Climate Change ……………………….…...53 Introduction…………………………………………………………………….53 Late Pleistocene Fauna……………………………………………....……..….. .. 54 Fauana at the Pleistocene-Holocene Boundary………………………….…..…57 Early Holocene Fauna…………………………………………………………. .. 58 Discussion………………………………………………………………….…...59 Chapter 6: Stratigraphic/Geomorphic Proxy Datasets for Climate Change ……...61 Introduction……………………………………………………………………..61 Olympic Peninsula ………………………………………………………….…..67 Manis Site………………………………………………………………67 Columbia Plateau …………………………………………………………….…68 Wells Reservoir Region………………………………………………...68 Rocky Reach of the Columbia River Valley.…………………….……. .. 68 Richey-Roberts Site……………………………………………….…….69 Johnsons Canyon………………………………………………….……69 viii Bishop Spring Site………………………………………………….…..70 Lind Coulee Site………………………………………………….…….70 BPA Springs Site……………………………………………….………70 Yakima Training Center……………………………………….………. .. 71 Sentinel Gap Site………………………………………………………..71 Marmes Rockshelter…………………………………………….……... .73 Granite Point Site……………………………………………….….…...73 Hatwai Site…………………………………………………………….. ... 74 Benton Meadows…………….………………………………….…....... .74 Lower Salmon River Canyon ………………………………………….............. .. 74 Northern Rocky Mountains ……………………………………………………. .. 75 McArthur Lake Vicinity……………………………………….………. .75 South Fork Payette River…………………………………………........ ... 76 Snake River Plain ………………………………………………………….…... .. 76 Grand Ronde Valley …………………………………………………………….77 Central Oregon Coast ………………………………………………………..….78 Discussion ……………………………………………………………….……...78 Chapter 7: Conclusion ………………………………………………………………... .. 81 Introduction…………………………………………………………………….. ... 81 What are the Characteristics of Climate Change at the Terminal Pleistocene in the Pacific Northwest?................................................................. .82 Climatic and Environmental Conditions at the Younger Dryas Chronozone……………………………………………………………..82 Human Record at the Terminal Pleistocene…………………………….. 88 What is the Nature of Paleoenvironmental Change at the Pleistocene- Holocene Boundary?........................................................................................... .92 Climatic and Environmental Conditions at the Pleistocene-Holocene Boundary………………………………………………………………. .92 Changes in Human Adaptation at the Pleistocene-Holocene Boundary……………………………………………………….……….96 What is the Relationship Between Regionalization of Late Paleoindian-Early Archaic Populations and Climate Change?........................................................101 Regionalization at the Terminal Pleistocene…………………………..101 Pleistocene-Holocene Boundary and Early Holocene Regionalization.....................................................................................
Recommended publications
  • Climatic Events During the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil Joseh C
    Quaternary International 72 (2000) 73}85 Climatic events during the Late Pleistocene and Holocene in the Upper Parana River: Correlation with NE Argentina and South-Central Brazil JoseH C. Stevaux* Universidade Federal do Rio Grande do Sul - Instituto de GeocieL ncias - CECO, Universidade Estadual de Maringa& - Geography Department, 87020-900 Maringa& ,PR} Brazil Abstract Most Quaternary studies in Brazil are restricted to the Atlantic Coast and are mainly based on coastal morphology and sea level changes, whereas research on inland areas is largely unexplored. The study area lies along the ParanaH River, state of ParanaH , Brazil, at 223 43S latitude and 533 10W longitude, where the river is as yet undammed. Paleoclimatological data were obtained from 10 vibro cores and 15 motor auger holes. Sedimentological and pollen analyses plus TL and C dating were used to establish the following evolutionary history of Late Pleistocene and Holocene climates: First drier episode ?40,000}8000 BP First wetter episode 8000}3500 BP Second drier episode 3500}1500 BP Second (present) wet episode 1500 BP}Present Climatic intervals are in agreement with prior studies made in southern Brazil and in northeastern Argentina. ( 2000 Elsevier Science Ltd and INQUA. All rights reserved. 1. Introduction the excavation of Sete Quedas Falls on the ParanaH River (today the site of the Itaipu dam). Barthelness (1960, Geomorphological and paleoclimatological studies of 1961) de"ned a regional surface in the Guaira area de- the Upper ParanaH River Basin are scarce and regional in veloped at the end of the Pleistocene (Guaira Surface) nature. King (1956, pp. 157}159) de"ned "ve geomor- and correlated it with the Velhas Cycle.
    [Show full text]
  • Rancholabrean Hunters of the Mojave Lakes Country
    REVIEWS 203 the Myoma Dunes sites, but the coprolites University of Utah Bulletin, Biological there produced no pollen of domestic plants. Series 10(7): 17-166. Therefore, the squash probably were not grown locally. Wilke notes, however, that agriculture has some antiquity among the Cahuilla; it figures prominently in myth and ritual and there are Cahuilla terms for crop The Ancient Californians: Rancholabrean plants and planting methods. The crops Hunters of the Mojave Lakes Country. themselves derive from the Lower Colorado Emma Lou Davis, ed. Natural History agricultural complex. Museum of Los Angeles County, Science From this Wilke concludes that agriculture Series 29, 1978. $10.00 (paper). is best viewed as but one aspect of Cahuilla Reviewed by DAVID L. WEIDE Indian subsistence that had arisen by early University of Nevada, Las Vegas historic times. Late Prehistoric Human Ecology at Lake "The Mojave Desert is among all things Cahuilla is of major importance to scholars of contradictory" are the opening lines of an California Desert prehistory. It provides the archaeological report that, like its subject first clear picture of the changing lake stands matter—the reconstruction of prehistoric in the Salton Basin and the probable cultural lifeways in the lacustrine basins of the north­ changes and population movements that west Mojave Desert—is both controversial followed. The catastrophic changes in Lake and contradictory, speculative yet factual, Cahuilla must have had far-reaching influence tangible but agonizingly illusive. The author over a wide area of southern California. The clearly states that this book is "experimental" significance of these changes for the late pre­ and those of us who know her agree—the book history of adjacent areas should be apparent is experimental—life is experimental—and to the reader.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • Persistence of Middle Stone Age Technology to the Pleistocene/Holocene Transition Supports a Complex Hominin Evolutionary Scenario in West Africa
    This is a repository copy of Persistence of Middle Stone Age technology to the Pleistocene/Holocene transition supports a complex hominin evolutionary scenario in West Africa. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129212/ Version: Accepted Version Article: Scerri, E.M.L., Blinkhorn, J., Niang, K. et al. (2 more authors) (2017) Persistence of Middle Stone Age technology to the Pleistocene/Holocene transition supports a complex hominin evolutionary scenario in West Africa. Journal of Archaeological Science: Reports, 11. pp. 639-646. ISSN 2352-409X https://doi.org/10.1016/j.jasrep.2017.01.003 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Persistence of Middle Stone Age technology to the Pleistocene/Holocene transition supports a complex hominin evolutionary scenario in West Africa Eleanor M.L. Scerria*, James Blinkhornb, Khady Niangc, Mark D. Batemand, Huw S. Groucutta a Research
    [Show full text]
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • Anthropological Study of Yakama Tribe
    1 Anthropological Study of Yakama Tribe: Traditional Resource Harvest Sites West of the Crest of the Cascades Mountains in Washington State and below the Cascades of the Columbia River Eugene Hunn Department of Anthropology Box 353100 University of Washington Seattle, WA 98195-3100 [email protected] for State of Washington Department of Fish and Wildlife WDFW contract # 38030449 preliminary draft October 11, 2003 2 Table of Contents Acknowledgements 4 Executive Summary 5 Map 1 5f 1. Goals and scope of this report 6 2. Defining the relevant Indian groups 7 2.1. How Sahaptin names for Indian groups are formed 7 2.2. The Yakama Nation 8 Table 1: Yakama signatory tribes and bands 8 Table 2: Yakama headmen and chiefs 8-9 2.3. Who are the ―Klickitat‖? 10 2.4. Who are the ―Cascade Indians‖? 11 2.5. Who are the ―Cowlitz‖/Taitnapam? 11 2.6. The Plateau/Northwest Coast cultural divide: Treaty lines versus cultural 12 divides 2.6.1. The Handbook of North American Indians: Northwest Coast versus 13 Plateau 2.7. Conclusions 14 3. Historical questions 15 3.1. A brief summary of early Euroamerican influences in the region 15 3.2. How did Sahaptin-speakers end up west of the Cascade crest? 17 Map 2 18f 3.3. James Teit‘s hypothesis 18 3.4. Melville Jacobs‘s counter argument 19 4. The Taitnapam 21 4.1. Taitnapam sources 21 4.2. Taitnapam affiliations 22 4.3. Taitnapam territory 23 4.3.1. Jim Yoke and Lewy Costima on Taitnapam territory 24 4.4.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Timeline from Ice Ages to European Arrival in New England
    TIMELINE FROM ICE AGES TO EUROPEAN ARRIVAL IN NEW ENGLAND Mitchell T. Mulholland & Kit Curran Department of Anthropology, University of Massachusetts Amherst 500 Years Before Present CONTACT Europeans Arrive PERIOD 3,000 YBP WOODLAND Semi-permanent villages in which cultivated food crops are stored. Mixed-oak forest, chestnut. Slash and burn agriculture changes appearance of landscape. Cultivated plants: corn, beans, and squash. Bows and arrows, spears used along with more wood, bone tools. 6,000 YBP LATE Larger base camps; small groups move seasonally ARCHAIC through mixed-oak forest, including some tropical plants. Abundant fish and game; seeds and nuts. 9,000 YBP EARLY & Hunter/gatherers using seasonal camping sites for MIDDLE several months duration to hunt deer, turkey, ARCHAIC and fish with spears as well as gathering plants. 12,000 YBP PALEOINDIAN Small nomadic hunting groups using spears to hunt caribou and mammoth in the tundra Traditional discussions of the occupation of New England by prehistoric peoples divide prehistory into three major periods: Paleoindian, Archaic and Woodland. Paleoindian Period (12,000-9,000 BP) The Paleoindian Period extended from approximately 12,000 years before present (BP) until 9,000 BP. During this era, people manufactured fluted projectile points. They hunted caribou as well as smaller animals found in the sparse, tundra-like environment. In other parts of the country, Paleoindian groups hunted larger Pleistocene mammals such as mastodon or mammoth. In New England there is no evidence that these mammals were utilized by humans as a food source. People moved into New England after deglaciation of the region concluded around 14,000 BP.
    [Show full text]
  • Climate Reversals and the Transition to Agriculture
    CLIMATE REVERSALS AND THE TRANSITION TO AGRICULTURE Gregory K. Dow, Clyde G. Reed, and Nancy Olewiler Department of Economics Simon Fraser University July 2008 Abstract. Until about 13,000 years ago all humans obtained their food through hunting and gathering, but thereafter people in some parts of the world began a transition to agriculture. Recent data strongly implicate climate change as the driving force behind the transition in southwest Asia. We propose a model of this process in which population and technology respond endogenously to climate. After a period of favorable environmental conditions during which regional population grew, an abrupt climate reversal forced people to take refuge at a few favored sites. The resulting spike in local population density reduced the marginal product of labor in foraging and made cultivation attractive. Once cultivation began, technological progress, including artificial selection, eventually led to domesticated plants. Farming became a permanent part of the regional economy when productivity growth was combined with climate recovery. The available data on cases of transition and non-transition are consistent with this model but often inconsistent with rival explanations. Acknowledgment. Doug Allen, Matthew Baker, Ofer Bar-Yosef, Cliff Bekar, Sam Bowles, Sue Colledge, Patrick Francois, Brian Hayden, Hillard Kaplan, Gordon Myers, Arthur Robson, and four anonymous referees for the Journal of Economic Growth commented on earlier drafts. We are grateful to audiences at Simon Fraser University, the University of British Columbia, the 2005 SSHA meeting, the 2006 AEA meeting, the 2006 SFU workshop on the Neolithic transition, and the 2006 Conference on Early Economic Developments at the University of Copenhagen.
    [Show full text]
  • Appendix F Paleontological Assessment
    D RAFT E NVIRONMENTAL I MPACT R EPORT A MAZON F ACILITY A UGUST 2020 C YPRESS, C ALIFORNIA APPENDIX F PALEONTOLOGICAL ASSESSMENT \\VCORP12\Projects\CCP1603.05A\Draft EIR\Appendices\Appendix F Cover.docx (08/26/20) A MAZON F ACILITY D RAFT E NVIRONMENTAL I MPACT R EPORT C YPRESS, C ALIFORNIA A UGUST 2020 This page intentionally left blank \\VCORP12\Projects\CCP1603.05A\Draft EIR\Appendices\Appendix F Cover.docx (08/26/20) CARLSBAD FRESNO IRVINE LOS ANGELES PALM SPRINGS POINT RICHMOND RIVERSIDE July 6, 2020 ROSEVILLE SAN LUIS OBISPO Jeff Zwack Project Planner City of Cypress 5275 Orange Avenue Cypress, CA 90630 Subject: Paleontological Resources Assessment for the Amazon Facility, Cypress, Orange County, California Dear Mr. Zwack: LSA conducted a Paleontological Resources Assessment for the Amazon Facility (project) in Cypress, Orange County, California. The purpose of the assessment was to determine whether paleontological resources may be present within the proposed project site, whether they might be impacted by development of the project, and to make recommendations to mitigate any potential impacts to paleontological resources. PROJECT LOCATION AND DESCRIPTION The project site is located at 6400‐6450 Katella Avenue and is bounded by Katella Avenue to the north, Holder Street to the east, industrial/commercial facilities to the west, and the Stanton Storm Channel to the south. The project site is depicted on the Los Alamitos, California 7.5‐minute United States Geological Survey (USGS) topographic map in Township 4 South, Range 11 West, Section 27, San Bernardino Baseline and Meridian (USGS, 1981; Figure 1 [Attachment B]). The project proposes the development of a “Last Mile” logistics facility for Amazon, Inc.
    [Show full text]
  • Radiocarbon Evidence Relating to Northern Great Basin Basketry Chronology
    UC Merced Journal of California and Great Basin Anthropology Title Radiocarbon Evidence Relating to Northern Great Basin Basketry Chronology Permalink https://escholarship.org/uc/item/52v4n8cf Journal Journal of California and Great Basin Anthropology, 20(1) ISSN 0191-3557 Authors Connolly, Thomas J Fowler, Catherine S Cannon, William J Publication Date 1998-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REPORTS Radiocarbon Evidence Relating ity over a span of nearly 10,000 years (cf. to Northern Great Basin Cressman 1942, 1986; Connolly 1994). Stages Basketry Chronology 1 and 2 are divided at 7,000 years ago, the approximate time of the Mt. Mazama eruption THOMAS J. CONNOLLY which deposited a significant tephra chronologi­ Oregon State Museum of Anthropology., Univ. of Oregon, Eugene, OR 97403. cal marker throughout the region. Stage 3 be­ CATHERINE S. FOWLER gins after 1,000 years ago,' when traits asso­ Dept. of Anthropology, Univ. of Nevada, Reno, NV ciated with Northern Paiute basketmaking tradi­ 89557. tions appear (Adovasio 1986a; Fowler and Daw­ WILLIAM J. CANNON son 1986; Adovasio and Pedler 1995; Fowler Bureau of Land Management, Lakeview, OR 97630. 1995). During Stage 1, from 11,000 to 7,000 years Adovasio et al. (1986) described Early ago, Adovasio (1986a: 196) asserted that north­ Holocene basketry from the northern Great ern Great Basin basketry was limited to open Basin as "simple twined and undecorated. " Cressman (1986) reported the presence of and close simple twining with z-twist (slanting decorated basketry during the Early Holo­ down to the right) wefts. Fort Rock and Spiral cene, which he characterized as a "climax Weft sandals were made (see Cressman [1942] of cultural development'' in the Fort Rock for technical details of sandal types).
    [Show full text]
  • Program of the 75Th Anniversary Meeting
    PROGRAM OF THE 75 TH ANNIVERSARY MEETING April 14−April 18, 2010 St. Louis, Missouri THE ANNUAL MEETING of the Society for American Archaeology provides a forum for the dissemination of knowledge and discussion. The views expressed at the sessions are solely those of the speakers and the Society does not endorse, approve, or censor them. Descriptions of events and titles are those of the organizers, not the Society. Program of the 75th Anniversary Meeting Published by the Society for American Archaeology 900 Second Street NE, Suite 12 Washington DC 20002-3560 USA Tel: +1 202/789-8200 Fax: +1 202/789-0284 Email: [email protected] WWW: http://www.saa.org Copyright © 2010 Society for American Archaeology. All rights reserved. No part of this publication may be reprinted in any form or by any means without prior permission from the publisher. Program of the 75th Anniversary Meeting 3 Contents 4............... Awards Presentation & Annual Business Meeting Agenda 5……….….2010 Award Recipients 10.................Maps of the America’s Center 12 ................Maps of Renaissance Grand St. Louis 14 ................Meeting Organizers, SAA Board of Directors, & SAA Staff 15 .............. General Information 18. ............. Featured Sessions 20 .............. Summary Schedule 25 .............. A Word about the Sessions 27............... Program 161................SAA Awards, Scholarships, & Fellowships 167............... Presidents of SAA . 168............... Annual Meeting Sites 169............... Exhibit Map 170................Exhibitor Directory 180................SAA Committees and Task Forces 184………….Index of participants 4 Program of the 75th Anniversary Meeting Awards Presentation & Annual Business Meeting America’s Center APRIL 16, 2010 5 PM Call to Order Call for Approval of Minutes of the 2009 Annual Business Meeting Remarks President Margaret W.
    [Show full text]