View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Biomedical Discovery and provided by PubMed Central Collaboration BioMed Central Case Study Open Access The emergence and diffusion of DNA microarray technology Tim Lenoir*† and Eric Giannella† Address: Jenkins Collaboratory for New Technologies in Society, Duke University, John Hope Franklin Center, 2204 Erwin Road, Durham, North Carolina 27708-0402, USA Email: Tim Lenoir* -
[email protected]; Eric Giannella -
[email protected] * Corresponding author †Equal contributors Published: 22 August 2006 Received: 09 August 2006 Accepted: 22 August 2006 Journal of Biomedical Discovery and Collaboration 2006, 1:11 doi:10.1186/1747-5333-1-11 This article is available from: http://www.j-biomed-discovery.com/content/1/1/11 © 2006 Lenoir and Giannella; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail.