Received Osti
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Running Head: SEQUENCE STRATIGRAPHY of TEXAS
Running Head: SEQUENCE STRATIGRAPHY OF TEXAS MIDDLE PERMIAN PLATFORM CARBONATES OUTCROP-BASED CHARACTERiZATION OF LEONARDIAN PLATFORM CARBONATE IN WEST TEXAS: IMPLICATIONS FOR SEQUENCE STRATIGRAPHIC STYLES IN TRANSITIONAL ICEHOUSE-GREENHOUSE SETTINGS Stephen C. Ruppel, W. Bruce Ward1, and Eduardo E. Ariza Bureau of Economic Geology The University of Texas at Austin 1 Current address: Earthworks LLC, P.O. Box 178, Newtown, CT 06470-0178 1 ABSTRACT The Sierra Diablo Mountains of West Texas contain world class exposures of lower and middle Permian platform carbonates. As such these outcrops offer key insights into the products of carbonate deposition in the transitional icehouse/greenhouse setting of the early-mid Permian that are available in few other places in the world. They also afford an excellent basis for examing how styles of facies and sequence development vary between platform tops and platform margins. Using outcrop data and observations from over 2 mi (3 km) of continuous exposure, we collected detailed data on the facies composition and architecture of high frequency (cycle-scale) and intermediate frequency (high frequency sequence scale) successions within the Leonardian. We used these data to define facies stacking patterns along depositional dip across the platform in both low and high accommodation settings and to document how these patterns vary systematically between and within sequences . These data not only provide a basis for interpreting similar Leonardian platform successions from less well constrained outcrop and subsurface data sets but also point out some important caveats that should be considered serve as an important model for understanding depositional processes during the is part of the Permian worldwide. -
Table of Contents 4.0 Description of the Physical
TABLE OF CONTENTS 4.0 DESCRIPTION OF THE PHYSICAL ENVIRONMENT............................................ 41 4.1 Geology ................................................................................................. 41 4.1.1 Methodology ........................................................................................ 41 4.1.2 Regional Geological Formations........................................................... 42 4.1.3 Local Geological Units ......................................................................... 47 4.1.3.1 Atlantic Coast .......................................................................... 47 4.1.3.2 Gatun Locks.............................................................................. 48 4.1.3.3 Gatun Lake ............................................................................... 49 4.1.3.4 Culebra Cut ......................................................................... ...410 4.1.3.5 Pacific Locks ...........................................................................411 4.1.3.6 Pacific Coast............................................................................412 4.1.4 Paleontological Resources ...................................................................413 4.1.5 Geotechnical Characterization .............................................................417 4.1.6 Tectonics.............................................................................................421 4.2 Geomorphology ..............................................................................................422 -
First North American Fossil Monkey and Early Miocene Tropical Biotic Interchange Jonathan I
LETTER doi:10.1038/nature17415 First North American fossil monkey and early Miocene tropical biotic interchange Jonathan I. Bloch1, Emily D. Woodruff1,2, Aaron R. Wood1,3, Aldo F. Rincon1,4, Arianna R. Harrington1,2,5, Gary S. Morgan6, David A. Foster4, Camilo Montes7, Carlos A. Jaramillo8, Nathan A. Jud1, Douglas S. Jones1 & Bruce J. MacFadden1 New World monkeys (platyrrhines) are a diverse part of modern Primates Linnaeus, 1758 tropical ecosystems in North and South America, yet their early Anthropoidea Mivart, 1864 evolutionary history in the tropics is largely unknown. Molecular Platyrrhini Geoffroy, 1812 divergence estimates suggest that primates arrived in tropical Cebidae Bonaparte, 1831 Central America, the southern-most extent of the North American Panamacebus transitus gen. et sp. nov. landmass, with several dispersals from South America starting with the emergence of the Isthmus of Panama 3–4 million years Etymology. Generic name combines ‘Panama’ with ‘Cebus’, root taxon ago (Ma)1. The complete absence of primate fossils from Central for Cebidae. Specific name ‘transit’ (Latin, crossing) refers to its implied America has, however, limited our understanding of their history early Miocene dispersal between South and North America. in the New World. Here we present the first description of a fossil Holotype. UF 280128, left upper first molar (M1; Fig. 2a, b). monkey recovered from the North American landmass, the oldest Referred material. Left upper second molar (M2; UF 281001; Fig. 2a, b), known crown platyrrhine, from a precisely dated 20.9-Ma layer in partial left lower first incisor (I1; UF 280130), right lower second the Las Cascadas Formation in the Panama Canal Basin, Panama. -
Neogene Basin Evolution in the Southwestern Dominican Republic: a Foraminiferal Study
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1989 Neogene Basin Evolution in the Southwestern Dominican Republic: A Foraminiferal Study. Peter Paul Mclaughlin Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mclaughlin, Peter Paul Jr, "Neogene Basin Evolution in the Southwestern Dominican Republic: A Foraminiferal Study." (1989). LSU Historical Dissertations and Theses. 4734. https://digitalcommons.lsu.edu/gradschool_disstheses/4734 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
@Flmnh.Ufl.Edu Panama Isthmus Rise at 4.2-3.5 Ma
Panama isthmus rise at 4.2-3.5 Ma @flmnh.ufl.edu Thermohaline Circulation Orange=warm shallow waters Blue=cold deep waters Broecker et al 1987; Lozier 2010 NHG at 2.7 Ma Artic glaciation, Gulf Stream BIRTH OF CARIBBEAN SEA Caribbean non-seasonal nutrient-poor high-carbonates (corals) Pacific Seasonality rich in nutrients low carbonates (few corals) GABI Pacific Caribbean CA SA 3.5Ma Classic “Panamanian Isthmus Rise” Literature (more than 1800 citations over past 30 years) Title Author/Publication Total citations Total citations Date (Web of Knowledge) (Google Scholar) The geology of the Darien, Panama, and the late Miocene- Pliocene collision of the Panama Arc with northwestern South America Coates et al., 2004 84 100 Early Neogene history of the Central American arc from Bocas del Toro, western Panama Coates et al., 2003 43 41 Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation Haugh, 1998 356 408 The geologic evolution of the Central American isthmus Coates & Obando, 1996 - 460 Closure of the Isthmus of Panamá: The near-shore marine record of Costa Rica and western Panama Coates et al., 1992 - 306 The Choco Block in the Northwestern corner of South America: structural, tectonostratigraphic and paleogeographic implications Duque, 1990 - 78 Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and evolution of the Pama Seaway Duque, 1990 181 217 The great American biotic interchange Stehli & Webb, 1985 - 258 Splendid Isolation: The Curious History of South American Mammals Simpson, 1983 - 366 Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores Lloyd, 1978 - 222 “no vicariant date [3.5 Ma] is better dated than the Isthmus (Lessios et al 2008)” @Ziegler photos by C. -
Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by Ronald F
Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by 1 2 3 Ronald F. Broadhead , Zhou Jianhua and William D. Raatz 1New Mexico Bureau of Geology and Mineral Resources, a division of New Mexico Tech, Socorro NM 87801 2Department of Computer Sciences, New Mexico Tech, Socorro NM 87801 3New Mexico Bureau of Geology and Mineral Resources, present address OxyPermian, Houston, TX From R.L. Martin and K.F. Hickey West Texas Geological Society, 2002 Open File Report 479 New Mexico Bureau of Geology and Mineral Resources, A division of New Mexico Tech Socorro, NM 87801 Peter A. Scholle, Director July 2004 DISCLAIMER This open-file report was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-02NT15131. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implicit, or assumes any legal liability for the responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
Ca///S>Sj X + 1176
'\-ftt" V • Ca///s>Sj X + 1176 H PALAEONTOLOGY Volume 19 Part 1 February 1976 Tertiary and Pleistocene crabs from Barbados and Trinidad BY lb J. S. H. COLLINS and S. F. MORRIS lilKrJ^T Vision of craatac- PUBLISHED BY THE PALAEONTOLOGICAL ASSOCIATION LONDON THE PALAEONTOLOGICAL ASSOCIATION The Association publishes Palaeontology and Special Papers in Palaeontology. Details of member- ship and subscription rates may be found inside the back cover. PALAEONTOLOGY The journal Palaeontology is devoted to the publication of papers on all aspects of palaeontology. Review articles are particularly welcome, and short papers can often be published rapidly. A high standard of illustration is a feature of the journal. Four parts are published each year and are sent free to all members of the Association. SPECIAL PAPERS IN PALAEONTOLOGY This is a series of substantial separate works. Members may subscribe to the Series; alternatively, Ordinary and Student members only may obtain individual copies at reduced rates. The following Special Papers are available: 1. (for 1967): Miospores in the Coal Seams of the Carboniferous of Great Britain, by A. H. V. SMITH and M. A. BUTTERWORTH. 324 pp., 72 text-figs., 27 plates. Price £8 (U.S. $22.00), post free. 2. (for 1968): Evolution of the Shell Structure of Articulate Brachiopods, by A. WILLIAMS. 55 pp., 27 text- figs., 24 plates. Price £5 (U.S. $13.00). 3. (for 1968): Upper Maestrichtian Radiolaria of California, by HELEN P. FOREMAN. 82 pp., 8 plates. Price £3 (U.S. £8.00). 4. (for 1969): Lower Turonian Ammonites from Israel, by R. -
Capitan Reef Complex Structure and Stratigraphy
Capitan Reef Complex Structure and Stratigraphy Report by Allan Standen, P.G. Steve Finch, P.G. Randy Williams, P.G., Beronica Lee-Brand, P.G. Assisted by Paul Kirby Texas Water Development Board Contract Number 0804830794 September 2009 TABLE OF CONTENTS 1. Executive summary....................................................................................................................1 2. Introduction................................................................................................................................2 3. Study area geology.....................................................................................................................4 3.1 Stratigraphy ........................................................................................................................4 3.1.1 Bone Spring Limestone...........................................................................................9 3.1.2 San Andres Formation ............................................................................................9 3.1.3 Delaware Mountain Group .....................................................................................9 3.1.4 Capitan Reef Complex..........................................................................................10 3.1.5 Artesia Group........................................................................................................11 3.1.6 Castile and Salado Formations..............................................................................11 3.1.7 Rustler Formation -
Paleocene–Eocene Palynomorphs from the Chicxulub Impact Crater, Mexico
Palynology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smith , Sophie Warny , David M. Jarzen , Thomas Demchuk , Vivi Vajda & Sean P.S. Gulick To cite this article: Vann Smith , Sophie Warny , David M. Jarzen , Thomas Demchuk , Vivi Vajda & Sean P.S. Gulick (2020) Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen, Palynology, 44:3, 489-519, DOI: 10.1080/01916122.2019.1705417 To link to this article: https://doi.org/10.1080/01916122.2019.1705417 View supplementary material Accepted author version posted online: 17 Dec 2019. Published online: 23 Jan 2020. Submit your article to this journal Article views: 138 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY 2020, VOL. 44, NO. 3, 489–519 https://doi.org/10.1080/01916122.2019.1705417 Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: angiosperm pollen Vann Smitha,b , Sophie Warnya,b, David M. Jarzenc, Thomas Demchuka, Vivi Vajdad and Sean P.S. Gulicke aDepartment of Geology and Geophysics, LSU, Baton Rouge, LA, USA; bMuseum of Natural Science, LSU, Baton Rouge, LA, USA; cCleveland Museum of Natural History, Cleveland, OH, USA; dSwedish Museum of Natural History, Stockholm, Sweden; eInstitute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, TX, USA ABSTRACT KEYWORDS At the end of the Cretaceous Period, an asteroid collided with the Earth and formed the Chicxulub Mexico; Paleocene; impact structure on the Yucatan Platform. -
University of Florida Thesis Or Dissertation
SYSTEMATICS, BIOSTRATIGRAPHY, AND PALEOBIOGEOGRAPHY OF EARLY MIOCENE ARTIODACTYLS FROM THE PANAMA CANAL, PANAMA, CENTRAL AMERICA By ALDO FERNANDO RINCÓN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN GEOLOGY UNIVERSITY OF FLORIDA 2016 1 © 2016 Aldo Fernando Rincón 2 To my dear grandmother… 3 ACKNOWLEDGMENTS I thank Carlos A. Jaramillo at STRI and Camilo Montes at Universidad de Los Andes for all these years of support and advice; to my advisor (Jonathan I. Bloch) for everything he has done for my professional development; to the additional members of my Research Committee (Bruce J. MacFadden, David A. Foster, Richard C. Hulbert Jr., and David W. Steadman) for help with anatomical terminology, taxonomic nomenclature, and academic support. Special thanks to Richard Hulbert Jr., David Steadman, and Jason R. Bourque for their moral support during the preparation of the final document and, in general, during my attendance to graduate school. Jason R. Bourque, Rachell Narducci, and Dawn Mitchell at FLMNH, who prepared the specimens in the laboratory. Sandra Suarez, Maria C. Vallejo, and Federico Moreno (STRI); Jorge Moreno-Bernal, Cristina Byrd, Alan Bouché, Silvia Ascari, Katy. Cummings, Aaron. R. Wood, and Chris Ward (PCP-PIRE) who helped in the collection of the specimens. I thank the Panama Canal Authority (ACP) for access to relevant fossil sites. I specially thank to Pamela Haines, John Jaeger and Raymond Russo in the Department of Geological Sciences at the University of Florida for all their help during the Graduate Program. This research was supported by UF Research Opportunity Grant; the U.S. -
Collected from Costa Rica and Panama by Members of the Panama Paleontology Project
Bulletin of the Mizunami Fossil Museum, no. 32 (2005), p. 53-85, 4 pls., figs. © 2005, Mizunami Fossil Museum Neogene and Quatenary crabs (Crustacea, Decapoda) collected from Costa Rica and Panama by members of the Panama Paleontology Project Jonathan A. Todd 1 and Joe S. H. Collins 1,2 1 Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK 2 8 Shaw’s Cottages, Perry Rise, London, SE23 2QN, UK Abstract Crabs of Middle Miocene to Early Pleistocene age collected by members of the Panama Paleontology Project are described from the (Caribbean) Southern Limón Basin of Costa Rica and the Canal and Bocas del Toro basins of Panama, the (Isthmian) Chucunaque-Tuira Basin of Panama, and the (East Pacific) Osa-Burica, Parrita and Tempisque basins of Costa Rica. Thirty taxa are identified to species level, of which 25 are described in detail. Of these twelve species are new: Ctenocheles falciformis sp. nov., Dardanus biordines sp. nov., Hepatus biformis sp. nov., Hepatus lineatinus sp. nov., Thoe asperoides sp. nov., Platylambrus spinulatus sp. nov., Speleophorus subcir- cularis sp. nov., Persephona enigmatica sp. nov., Persephona manningi sp. nov., Iliacantha panamanica sp. nov., Euphylax maculatus sp. nov., Lophopanopeus maculoides sp. nov. Two new combinations are proposed; Glypturus toulai nov. comb. for Callianassa toulai Rathbun, 1919a, and Neocallichirus scotti nov. comb. for Callianassa scot- ti Brown and Pilsbry, 1913. A lectotype is designated for Callianassa toulai Rathbun, 1919a. As well as allowing description of new species, the new material includes the first fossil records of the extant genus Speleophorus and the extant species, albeit tentatively identified, Raninoides benedicti Rathbun, 1935a and Panopeus chilensis A. -
Wolfcamp and Bone Spring Shale Plays Geology Review
Permian Basin Wolfcamp and Bone Spring Shale Plays Geology review July 2019 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. EIA author contact: Dr. Olga Popova Email: [email protected] U.S. Energy Information Administration | Permian Basin i July 2019 Contents Introduction .................................................................................................................................................. 2 Permian Basin ............................................................................................................................................... 2 Regional tectonic setting and geologic framework ................................................................................. 2 Regional Stratigraphy .............................................................................................................................. 4 Paleogeography and depositional environment ..................................................................................... 6 Wolfcamp formation ....................................................................................................................................