Can Nuclear Weapons Fallout Mark the Beginning of the Anthropocene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Taming of “49” Big Science in Little Time
The Taming of “49” Big science in little time Recollections of Edward F. Hammel During the Manhattan Project, plutonium was often referred to, simply, as 49. Number 4 was for the last digit in 94 (the atomic number of plutonium) and 9 for the last digit in plutonium-239, the isotope of choice for nuclear weapons. The story that unfolds was adapted from Plutonium Metallurgy at Los Alamos, 1943–1945, as Edward F. Hammel remembers the events of those years. 48 Los Alamos Science Number 26 2000 The Taming of “49” he work in plutonium chemistry tion work was an inevitable conse- the metal could be fabricated into and metallurgy carried out at quence of the nuclear and physical satisfactory weapon components. TLos Alamos (Site Y) between research that was still to be conducted In addition, not until January 1944 1943 and 1945 had a somewhat contro- on the metal. It would clearly have did the first few milligrams of pile- versial history. The controversy was been inefficient and time consuming to produced plutonium arrive at Los about who was going to do what. ship small amounts of plutonium metal Alamos. The first 1-gram shipment At the time Los Alamos was being back to Chicago for repurification and arrived in February 1944, and quantity organized, most of the expertise in plu- refabrication into different sizes and shipments of plutonium did not begin to tonium chemistry resided at Berkeley, shapes for the next-scheduled nuclear arrive at Los Alamos until May 1945. where plutonium was discovered in physics experiment. From the outset, it was clear that the December 1940, and at the Met Lab in Minimizing the time spent to solve purification of plutonium was the most Chicago. -
The United States Nuclear Weapon Program
/.i. - y _-. --_- -. : _ - . i - DOE/ES4005 (Draft) I _ __ _ _ _____-. 67521 - __ __-. -- -- .-- THE UNITED STATES NUCLEAR - %”WEAPQN PROGRA,hik ..I .La;*I* . , ASUMMARYHISTORY \ ;4 h : . ,‘f . March 1983 \ .;_ U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division -. DOE/ES4005 (Draft) THE UNITED STATES NUCLEAR WEAPON PROG.RAM: ASUMMARYHISTORY .' . c *. By: . Roger M. Anders Archivist With: Jack M. Hall Alice L. Buck Prentice C. Dean March 1983 ‘ .I \ . U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division Washington, D. C. 20585 ‘Thelkpaemlt of Energy OqanizationAct of 1977 b-mughttcgether for the first tim in one departxrmtrmst of the Federal GovenmTle?t’s - Programs-With these programs cam a score of organizational ‘ . ? entities,eachwithi+ccxmhistoryandtraditions,frmadozendepart- . .‘I w ’ mnts and independentagencies. The EIistoryDivision,- prepareda . seriesof paqhlets on The Institutional Originsof the De-t of v Eachpamphletexplainsthehistory,goals,and achievemzntsof a predecessoragency or a major prqrm of the -to=-TY* This parquet, which replacesF&ger M. Anders'previous booklet on "The Office of MilitaxxApplication," traces the histoe of the UrL+& Statesnuclearweapx prcgramfrmits inceptionduring World War II to the present. Nuclear weqons form the core of America's m&z defenses. Anders'history describes the truly fo&idable effortscf 5e Atanic Energy Cmmission, the F;nergy Rfzsearch and Develqmlt z4dmCstratian,andtheDep&m- to create adiverse a* sophistica~arsenzl ofnucleaz ~accctqli&mentsofL~se agenciesandtheirplants andlabc J zrsatedan "atanic shie2 WMchp- Psrrericatoday. r kger M. Anders is a trained historianworking in the Eistzq Divisbn. -
Bellucci Et Al. 2016 Trinitite Revised V Final
1 Direct Pb isotopic analysis of a nuclear fallout debris particle from the 2 Trinity nuclear test 3 4 5 Jeremy J. Bellucci1*, Joshua F. Snape1, Martin W. Whitehouse1, Alexander A. Nemchin1,2 6 7 *Corresponding author, email address: [email protected] 8 9 1Department of Geosciences, Swedish Museum of Natural History, SE-104 05 10 Stockholm, Sweden 11 2 Department of Applied Geology, Curtin University, Perth, WA 6845, Australia 12 13 Abstract 14 15 The Pb isotope composition of a nuclear fallout debris particle has been directly 16 measured in post-detonation materials produced during the Trinity nuclear test by a 17 secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This 18 technique permits the visual assessment of the spatial distribution of Pb and can be used 19 to obtain full Pb isotope compositions in user-defined regions in a 70 µm x 70 µm 20 analytical window. In conjunction with BSE and EDS mapping of the same particle, the 21 Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic 22 sand. Similarly, the Pb isotope composition of the particle is resolvable from the 23 surrounding glass at the 2σ uncertainty level. The Pb isotope composition measured in 24 the particle here is in excellent agreement with that inferred from measurements of green 25 and red trinitite, suggesting that these types of particles are responsible for the Pb isotope 26 compositions measured in both trinitite glasses. 27 28 29 Keywords: 30 31 Trinitite, Trinity Test, Post Detonation Nuclear Forensics, Pb isotopes, SIMS, Scanning 32 Ion Imaging, Fallout Debris, Forensics 33 34 35 Introduction 36 37 In the event of a non-state sanctioned nuclear attack, forensic investigations will 38 be necessary to determine the provenance of the weapon and the materials used in 39 construction of the device. -
Fleming Vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University
The Histories Volume 2 | Issue 1 Article 3 Fleming vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University Follow this and additional works at: https://digitalcommons.lasalle.edu/the_histories Part of the History Commons Recommended Citation Hess, Kristin () "Fleming vs. Florey: It All Comes Down to the Mold," The Histories: Vol. 2 : Iss. 1 , Article 3. Available at: https://digitalcommons.lasalle.edu/the_histories/vol2/iss1/3 This Paper is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in The iH stories by an authorized editor of La Salle University Digital Commons. For more information, please contact [email protected]. The Histories, Vol 2, No. 1 Page 3 Fleming vs. Florey: It All Comes Down to the Mold Kristen Hess Without penicillin, the world as it is known today would not exist. Simple infections, earaches, menial operations, and diseases, like syphilis and pneumonia, would possibly all end fatally, shortening the life expectancy of the population, affecting everything from family-size and marriage to retirement plans and insurance policies. So how did this “wonder drug” come into existence and who is behind the development of penicillin? The majority of the population has heard the “Eureka!” story of Alexander Fleming and his famous petri dish with the unusual mold growth, Penicillium notatum. Very few realize that there are not only different variations of the Fleming discovery but that there are also other people who were vitally important to the development of penicillin as an effective drug. -
Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life ..................................................................... -
Journal of Radioanalytical and Nuclear Chemistry
J Radioanal Nucl Chem (2013) 298:993–1003 DOI 10.1007/s10967-013-2497-8 A multi-method approach for determination of radionuclide distribution in trinitite Christine Wallace • Jeremy J. Bellucci • Antonio Simonetti • Tim Hainley • Elizabeth C. Koeman • Peter C. Burns Received: 21 January 2013 / Published online: 13 April 2013 Ó Akade´miai Kiado´, Budapest, Hungary 2013 Abstract The spatial distribution of radiation within trin- The results from this study indicate that the device-related ititethinsectionshavebeenmappedusingalphatrack radionuclides were preferentially incorporated into the radiography and beta autoradiography in combination with glassy matrix in trinitite. optical microscopy and scanning electron microscopy. Alpha and beta maps have identified areas of higher activity, Keywords Trinitite Á Nuclear forensics Á Radionuclides Á and these are concentrated predominantly within the surfi- Fission and activation products Á Laser ablation inductively cial glassy component of trinitite. Laser ablation-inductively coupled plasma mass spectrometry coupled plasma mass spectrometry (LA-ICP-MS) analyses conducted at high spatial resolution yield weighted average 235U/238Uand240Pu/239Pu ratios of 0.00718 ± 0.00018 (2r) Introduction and 0.0208 ± 0.0012 (2r), respectively, and also reveal the presence of some fission (137Cs) and activation products Nuclear proliferation and terrorism are arguably the gravest (152,154Eu). The LA-ICP-MS results indicate positive cor- of threats to the security of any nation. The ability to relations between Pu ion signal intensities and abundances decipher forensic signatures in post-detonation nuclear of Fe, Ca, U and 137Cs. These trends suggest that Pu in debris is essential, both to provide a deterrence and to trinitite is associated with remnants of certain chemical permit a response to an incident. -
The Expert Panel on the Socio-Economic Impacts of Innovation Investments
INNOVATION IMPACTS: MEASUREMENT AND ASSESSMENT The Expert Panel on the Socio-economic Impacts of Innovation Investments Science Advice in the Public Interest INNOVATION IMPACTS: MEASUREMENT AND ASSESSMENT The Expert Panel on the Socio-economic Impacts of Innovation Investments ii Innovation Impacts: Measurement and Assessment THE COUNCIL OF CANADIAN ACADEMIES 180 Elgin Street, Suite 1401, Ottawa, ON Canada K2P 2K3 Notice: The project that is the subject of this report was undertaken with the approval of the Board of Governors of the Council of Canadian Academies. Board members are drawn from the Royal Society of Canada (RSC), the Canadian Academy of Engineering (CAE), and the Canadian Academy of Health Sciences (CAHS), as well as from the general public. The members of the expert panel responsible for the report were selected by the Council for their special competencies and with regard for appropriate balance. This report was prepared in response to a request from the Ontario Ministry of Research and Innovation. Any opinions, findings, or conclusions expressed in this publication are those of the authors, the Expert Panel on the Socio-economic Impacts of Innovation Investments, and do not necessarily represent the views of their organizations of affiliation or employment. Library and Archives Canada Cataloguing in Publication Innovation impacts: measurement and assessment [electronic resource] : socio-economic impacts of innovation investments of the government of Ontario/ Council of Canadian Academies. Includes bibliographical references and index. Electronic monograph in PDF format. Issued also in print format. ISBN 978-1-926558-58-5 1. Public investments – Ontario – Measurement. 2. Public investments – Ontario – Evaluation. 3. Technological innovations – Government policy – Ontario. -
Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3. -
The Effect of Chemical Incidents on First Responders
2019 The Effect of Chemical Incidents on First Responders: An Interview with Bruce Evans (MPA, NRP, CFOD, SEMSO), Fire Chief, Upper Pine River Fire Protection District A massive leak of liquefied chlorine gas created a dangerous cloud over the city of Henderson, NV, in the early morning hours of May 6, 1991. Over 200 people (including firefighters) were examined at a local hospital for respiratory distress caused by inhalation of the chlorine and approximately 30 were admitted for treatment. Approximately 700 individuals were taken to shelters, and between 2,000 and 7,000 individuals were evacuated from the area. ASPR TRACIE interviewed Chief Bruce Evans (who was a firefighter- paramedic at the time of the incident), asking him to share his my first large-scale incident: the experiences and highlight how the PEPCON explosion. PEPCON was Access these U.S. Fire Administration Technical Reports fire and emergency response to a rocket fuel plant that supplied propellant used for the space for more information on these chemical incidents has changed incidents: over the years. shuttle program. This explosion sent a shock wave over the • Fire and Explosions at Rocket Corina Solé Brito, ASPR TRACIE entire Las Vegas Valley, blew out Fuel Plant (CSB): Can you please share windows that were miles away, • Massive Leak of Liquefied your experience in Henderson and created a small, multicolored Chlorine Gas and other related incidents, how mushroom cloud on the south end you think the field has changed of the valley. The Professional since then, and what you think Golfers’ Association (PGA) was the future holds? also in town, so there were satellite or injuries from flying debris were I am fortunate trucks and news trucks present. -
Title Liberation of Neutrons in the Nuclear Explosion of Uranium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Liberation of neutrons in the nuclear explosion of uranium Title irradiated by thermal neutrons Author(s) 萩原, 篤太郎 Citation 物理化學の進歩 (1939), 13(6): 145-150 Issue Date 1939-12-31 URL http://hdl.handle.net/2433/46203 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 9fii~lt~mi~~ Vol. 13n No. 6 (1939) i LIBERATION OF NEUTRONS.. IN THE NUCLEAR EXPLOSION OF URANIUM IRRADIATED BY THERMAL NEUTRONS By Tolai•r:vFo IIrtlsiNaaa 1'he discovery ivas first announced by Kahn and Strassmanlir'. that uranium under neutron irradiation is split by absorbing the neuttntis into two lighter elements of roughly equal weight and charge, being accompanied h}' a:very large amount of ~energy release. This leads to~ the consic(eration that these fission fragments would contain considerable ea-cess of neutrons as compared with the corresponding heaviest stable isotopes with the same nuclear charges, assuming a division into two parts only. Apart of these exceh neutrons teas found, in fact, to be disposed of by the subsequent (~-ray transformations of the fission products;" but another possibility of reducing the neutron excess seems to be a direct i nnissioie of the neutrons, .vhich would either be emitted as apart of explosiat products. almost i;istantaneously at the moment ofthe nuclear splitting or escape from hi~hh' excited nuclei of the residual fragments. It may, Clterefore,he ex- rd pected that the explosion process mould produce even larger number of secondary neutrons than one. -
Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell the Radioactive Cloud Model
Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell Modeling radioactive fallout from nuclear explosions requires a description of the radioactive cloud and base surge and an atmospheric transport model for the cloud dispersion. The atmospheric transport model is independent of the radioactive nature of the dust and I will stick to a simple model in this study. The Radioactive Cloud Model Radioactive Release The first stage in understanding the fallout from a nuclear explosion is to estimate the amount of radioactivity released into the atmosphere. For external exposure to radiation, the main threat is from gamma-rays. The average gamma-ray activity1 produced in a nuclear explosion has been calculated as 530 megacuries per kiloton of fission yield at one hour after the explosion, with an average photon energy of 0.7 MeV. The data available on underground nuclear tests focuses on the fraction of the total activity found in “early” or “close-in” fallout ( Fc ), which measures only those particles that have been deposited in the first 24 2 hours . The fraction of the total activity released into the atmosphere ( f rel ) is greater than what appears in 3 the early fallout ( f rel > Fc ). The fraction Fc is dependant on the scaled depth of burst . A summary of the activity release data available for U.S. and Soviet underground tests are shown in Tables 1, Table 2, and Figure 1. Table 1: Activity Released from U.S. Underground Nuclear Tests. Test Yield Depth of Burst Scaled Depth of Burst Fraction of Total Activity 1/3 (kt) (m) (m/kt ) in Early Fallout (Fc) Jangle Sa 1.2 0 0 0.50 Jangle Ua 1.2 5.18 4.88 0.64 Teapot ESSa 1.2 20.4 19.2 0.46 Schoonerb 30 111 35.8 0.48 Cabrioletb 2.3 51.8 39.3 0.028 Buggyb,c 1.08 41.1 40.1 0.038 Sedanb,d 100 194 41.7 0.18 Danny Boya 0.43 33.5 44.4 0.04 Sulkyb 0.088 27.4 61.6 0.001 Neptunea 0.115 30.5 62.7 0.005 Blancaa 19 255 95.4 0.0005 a) Release fraction from Knox-65, Table 1. -
Uranium Mining and the U.S. Nuclear Weapons Program
Uranium Mining and the U.S. Nuclear Weapons Program Uranium Mining and the U.S. Nuclear Weapons Program By Robert Alvarez Formed over 6 billion years ago, uranium, a dense, silvery-white metal, was created “during the fiery lifetimes and explosive deaths in stars in the heavens around us,” stated Nobel Laureate Arno Penzias.1 With a radioactive half-life of about 4.5 billion years, uranium-238 is the most dominant of several unstable uranium isotopes in nature and has enabled scientists to understand how our planet was created and formed. For at least the last 2 billion years, uranium shifted from deep in the earth to the rocky shell-like mantle, and then was driven by volcanic processes further up to oceans and to the continental crusts. The Colorado Plateau at the foothills of the Rocky Mountains, where some of the nation’s largest uranium deposits exist, began to be formed some 300 million years ago, followed later by melting glaciers, and erosion which left behind exposed layers of sand, silt and mud. One of these was a canary-yellow sediment that would figure prominently in the nuclear age. From 1942 to 1971, the United States nuclear weapons program purchased about 250,000 metric tons of uranium concentrated from more than 100 million tons of ore.2 Although more than half came from other nations, the uranium industry heavily depended on Indian miners in the Colorado Plateau. Until recently,3 their importance remained overlooked by historians of the atomic age. There is little doubt their efforts were essential for the United States to amass one of the most destructive nuclear arsenals in the world.