Can Nuclear Weapons Fallout Mark the Beginning of the Anthropocene

Total Page:16

File Type:pdf, Size:1020Kb

Can Nuclear Weapons Fallout Mark the Beginning of the Anthropocene Feature Bulletin of the Atomic Scientists 2015, Vol. 71(3) 46–57 ! The Author(s) 2015 Reprints and permissions: Can nuclear weapons fallout sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0096340215581357 mark the beginning of the http://thebulletin.sagepub.com Anthropocene Epoch? Colin N. Waters, James P. M. Syvitski, Agnieszka Gałuszka, Gary J. Hancock, Jan Zalasiewicz, Alejandro Cearreta, Jacques Grinevald, Catherine Jeandel, J. R. McNeill, Colin Summerhayes, and Anthony Barnosky Abstract Many scientists are making the case that humanity is living in a new geological epoch, the Anthropocene, but there is no agreement yet as to when this epoch began. The start might be defined by a historical event, such as the beginning of the fossil-fueled Industrial Revolution or the first nuclear explosion in 1945. Standard strati- graphic practice, however, requires a more significant, globally widespread, and abrupt signature, and the fallout from nuclear weapons testing appears most suitable. The appearance of plutonium 239 (used in post- 1945 above-ground nuclear weapons tests) makes a good marker: This isotope is rare in nature but a significant component of fallout. It has other features to recommend it as a stable marker in layers of sedimentary rock and soil, including: long half-life, low solubility, and high particle reactivity. It may be used in conjunction with other radioactive isotopes, such as americium 241 and carbon 14, to categorize distinct fallout signatures in sediments and ice caps. On a global scale, the first appearance of plutonium 239 in sedimentary sequences corresponds to the early 1950s. While plutonium is easily detectable over the entire Earth using modern meas- urement techniques, a site to define the Anthropocene (known as a Ògolden spikeÓ) would ideally be located between 30 and 60 degrees north of the equator, where fallout is maximal, within undisturbed marine or lake environments. Keywords Anthropocene, golden spike, nuclear weapons fallout, radioactive isotope, radiogenic signature, Trinity test eventy years agoÑat 5:30 a.m. on flash of light and heat, and a roaring shock July 16, 1945Ñthe worldÕs first wave that took 40 seconds to reach the S nuclear device exploded at the closest observers, a fireball rose into the Trinity Test Site in what was then the sky, forming a mushroom cloud 7.5 miles Alamogordo Bombing and Gunnery high. J. Robert Oppenheimer later wrote Range in New Mexico. After an intense that he and other Manhattan Project Waters et al. 47 scientists who had gathered to watch the Industrial Revolution, or some other test Òknew the world would not be the major shift that left its mark on the geo- same.Ó The Ònuclear ageÓ had begun logical record. One recent paper argues (Ackland and McGuire, 1986; Eby et al., for either 1610 (when atmospheric 2010; Groves, 1962). carbon dioxide levels dipped after the Arguably, Trinity was also the begin- arrival of Europeans brought death to ning of something even bigger: a new about 50 million native people in the geological epoch (Zalasiewicz et al., Americas) or 1964 (based on peak 2015). Human activities have had such a carbon 14 fallout signatures) as potential great impact upon the Earth that many kickoff dates (Lewis and Maslin, 2015). researchers suggest we are no longer But if geoscientists want to establish a living in the Holocene Epoch (a term starting point for the Anthropocene, Tri- describing the most recent slice of geo- nity and the nuclear bombings and tests logical time that literally means Òentirely that followed it from 1945 to the early newÓ), but instead within a brand-new 1960s created an extremely distinctive time unit: the Anthropocene, from the radiogenic signatureÑa unique pattern Greek words for ÒhumanÓ and Ònew.Ó of radioactive isotopes captured in the Since 2009, a small group of us, com- layers of the planetÕs marine and lake posed of geoscientists and other experts sediments, rock, and glacial ice that can from across the globe, have assembled to serve as a clear, easily detected book- develop a proposal for this new termin- mark for the start of a new chapter in ology and to make recommendations to our planetÕs history. the official bodyÑknown as the Interna- Does it really matter what epoch tional Commission on StratigraphyÑthat we are living in? ItÕs obviously important determines geological time units. To to geologists and other Earth scientists, accomplish this, our panel, the Anthropo- who use the geological timescale to meas- cene Working Group, has not only been ure, describe, and compare events and examining the evidence for the Anthro- changes that happened in our planetÕs poceneÕs existence but attempting to past. For many people outside these determine the duration of this potential fields, though, the potential designation new unit (Zalasiewicz et al., 2012). The of a new epoch has political overtones. group will also make recommendations As an editorial in a leading scientific jour- about where the Anthropocene, if it nal observed a few years ago, the Anthro- does exist, fits into the hierarchy of geo- pocene Òreflects a grim reality on the logical time: period, epoch, or age (per- ground, and it provides a powerful frame- haps even within the Holocene Epoch). work for considering global change and Many scientists agree that the Earth how to manage itÓ (Nature, 2011). has left the Holocene behind and is now Although the Anthropocene has, in in the Anthropocene, but there is less the public sphere, become closely agreement about when the Anthropo- associated with climate change and par- cene began. Some researchers make ticularly the burning of fossil fuels, it is good arguments for dating the beginning much bigger than that. We and other sci- of this new epoch to the advent of entists who are considering whether a agriculture, or to the increase in fossil new epoch has begunÑand if so, how fuel consumption that ushered in the best to mark its onsetÑare examining a 48 Bulletin of the Atomic Scientists 71(3) host of environmental changes wrought Anthropocene: the range of globally by humans, from the domestication of extensive and abrupt signatures during plants and animals to the nuclear arms the mid-20th century (Waters et al., race. Public discussion of these changes 2014) that coincide with the ÒGreat can only lead to a growing awareness AccelerationÓ of population growth, eco- that humans have left an enormous nomic development, industrialization, footprint on the EarthÑand not just a mineral and hydrocarbon exploitation, carbon oneÑand may help increase the manufacturing of novel materials public understanding of how a warming such as plastics, the emergence of mega- climate relates to other momentous cities, and increased species extinctions global changes. and invasions (Steffen et al., 2007, 2015). Some researchers even suggest that the Origins of the Anthropocene onset of the Anthropocene is marked by a ÒdiachronousÓ boundary in sedi- In the geological timescale used by Earth mentsÑone in which a boundary between scientists, the Holocene Epoch began human-modified and ÒnaturalÓ ground about 11,700 years ago, after the planetÕs can be found that is of different ages at last glacial phase came to an end. When different locationsÑand thus is not a geo- the Anthropocene concept (Crutzen, logical time unit (Edgeworth et al., 2015). 2002; Crutzen and Stoermer, 2000) was The standard accepted practice for initially proposed, the Industrial Revolu- defining geological time units during tion was suggested as its starting point. the current eon (which began about 541 The reasoning was that industrializa- million years ago) is to identify a single tionÕs accelerated population expansion, reference point (or Ògolden spikeÓ), at a technological changes, and economic specific location, that marks the lower growth caused increased urbanization, boundary of a succession of rock layers mineral exploitation, and crop cultiva- as the beginning of the time unit. This tion; these factors in turn elevated atmos- internationally agreed-upon physical pheric carbon dioxide and methane reference point is representative of the concentrations enormously (Waters sum of environmental changes that jus- et al., 2014; Williams et al., 2011). tify recognition of the time unitÑthe Alternatively, the proponents of an appearance or extinction of a fossil spe- Òearly AnthropoceneÓ or ÒPalaeoan- cies, say, or a geochemical signature left thropoceneÓ interval that preceded the by a massive volcanic eruption (Smith, Industrial Revolution (Foley et al., 2013) 2014). For example, the boundary emphasize that this interval had a diffuse between the Cretaceous and Paleogene beginning, with signatures associated Periods has as its golden spike the base with the onset of deforestation, agricul- of an iridium-enriched layer of rock in El ture, and animal domestication; some Kef, TunisiaÑa marker for the debris scientists propose that these changes spewed into the atmosphere when a broadly coincide with the beginning huge meteorite struck the Earth and for of the existing Holocene Epoch (Smith the mass extinctions of dinosaurs and and Zeder, 2013). other creatures that followed that event. But there is growing evidence for The mid-20th century saw substantial another, later starting point for the changes to living things and their Waters et al. 49 ecological relationsÑalso known as burning of coal and other fossil biotic changes (Barnosky, 2014)Ñbut fuels, initially beginning during the those changes have not yet been well Industrial Revolution
Recommended publications
  • The Taming of “49” Big Science in Little Time
    The Taming of “49” Big science in little time Recollections of Edward F. Hammel During the Manhattan Project, plutonium was often referred to, simply, as 49. Number 4 was for the last digit in 94 (the atomic number of plutonium) and 9 for the last digit in plutonium-239, the isotope of choice for nuclear weapons. The story that unfolds was adapted from Plutonium Metallurgy at Los Alamos, 1943–1945, as Edward F. Hammel remembers the events of those years. 48 Los Alamos Science Number 26 2000 The Taming of “49” he work in plutonium chemistry tion work was an inevitable conse- the metal could be fabricated into and metallurgy carried out at quence of the nuclear and physical satisfactory weapon components. TLos Alamos (Site Y) between research that was still to be conducted In addition, not until January 1944 1943 and 1945 had a somewhat contro- on the metal. It would clearly have did the first few milligrams of pile- versial history. The controversy was been inefficient and time consuming to produced plutonium arrive at Los about who was going to do what. ship small amounts of plutonium metal Alamos. The first 1-gram shipment At the time Los Alamos was being back to Chicago for repurification and arrived in February 1944, and quantity organized, most of the expertise in plu- refabrication into different sizes and shipments of plutonium did not begin to tonium chemistry resided at Berkeley, shapes for the next-scheduled nuclear arrive at Los Alamos until May 1945. where plutonium was discovered in physics experiment. From the outset, it was clear that the December 1940, and at the Met Lab in Minimizing the time spent to solve purification of plutonium was the most Chicago.
    [Show full text]
  • The United States Nuclear Weapon Program
    /.i. - y _-. --_- -. : _ - . i - DOE/ES4005 (Draft) I _ __ _ _ _____-. 67521 - __ __-. -- -- .-- THE UNITED STATES NUCLEAR - %”WEAPQN PROGRA,hik ..I .La;*I* . , ASUMMARYHISTORY \ ;4 h : . ,‘f . March 1983 \ .;_ U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division -. DOE/ES4005 (Draft) THE UNITED STATES NUCLEAR WEAPON PROG.RAM: ASUMMARYHISTORY .' . c *. By: . Roger M. Anders Archivist With: Jack M. Hall Alice L. Buck Prentice C. Dean March 1983 ‘ .I \ . U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division Washington, D. C. 20585 ‘Thelkpaemlt of Energy OqanizationAct of 1977 b-mughttcgether for the first tim in one departxrmtrmst of the Federal GovenmTle?t’s - Programs-With these programs cam a score of organizational ‘ . ? entities,eachwithi+ccxmhistoryandtraditions,frmadozendepart- . .‘I w ’ mnts and independentagencies. The EIistoryDivision,- prepareda . seriesof paqhlets on The Institutional Originsof the De-t of v Eachpamphletexplainsthehistory,goals,and achievemzntsof a predecessoragency or a major prqrm of the -to=-TY* This parquet, which replacesF&ger M. Anders'previous booklet on "The Office of MilitaxxApplication," traces the histoe of the UrL+& Statesnuclearweapx prcgramfrmits inceptionduring World War II to the present. Nuclear weqons form the core of America's m&z defenses. Anders'history describes the truly fo&idable effortscf 5e Atanic Energy Cmmission, the F;nergy Rfzsearch and Develqmlt z4dmCstratian,andtheDep&m- to create adiverse a* sophistica~arsenzl ofnucleaz ~accctqli&mentsofL~se agenciesandtheirplants andlabc J zrsatedan "atanic shie2 WMchp- Psrrericatoday. r kger M. Anders is a trained historianworking in the Eistzq Divisbn.
    [Show full text]
  • Bellucci Et Al. 2016 Trinitite Revised V Final
    1 Direct Pb isotopic analysis of a nuclear fallout debris particle from the 2 Trinity nuclear test 3 4 5 Jeremy J. Bellucci1*, Joshua F. Snape1, Martin W. Whitehouse1, Alexander A. Nemchin1,2 6 7 *Corresponding author, email address: [email protected] 8 9 1Department of Geosciences, Swedish Museum of Natural History, SE-104 05 10 Stockholm, Sweden 11 2 Department of Applied Geology, Curtin University, Perth, WA 6845, Australia 12 13 Abstract 14 15 The Pb isotope composition of a nuclear fallout debris particle has been directly 16 measured in post-detonation materials produced during the Trinity nuclear test by a 17 secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This 18 technique permits the visual assessment of the spatial distribution of Pb and can be used 19 to obtain full Pb isotope compositions in user-defined regions in a 70 µm x 70 µm 20 analytical window. In conjunction with BSE and EDS mapping of the same particle, the 21 Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic 22 sand. Similarly, the Pb isotope composition of the particle is resolvable from the 23 surrounding glass at the 2σ uncertainty level. The Pb isotope composition measured in 24 the particle here is in excellent agreement with that inferred from measurements of green 25 and red trinitite, suggesting that these types of particles are responsible for the Pb isotope 26 compositions measured in both trinitite glasses. 27 28 29 Keywords: 30 31 Trinitite, Trinity Test, Post Detonation Nuclear Forensics, Pb isotopes, SIMS, Scanning 32 Ion Imaging, Fallout Debris, Forensics 33 34 35 Introduction 36 37 In the event of a non-state sanctioned nuclear attack, forensic investigations will 38 be necessary to determine the provenance of the weapon and the materials used in 39 construction of the device.
    [Show full text]
  • Fleming Vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University
    The Histories Volume 2 | Issue 1 Article 3 Fleming vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University Follow this and additional works at: https://digitalcommons.lasalle.edu/the_histories Part of the History Commons Recommended Citation Hess, Kristin () "Fleming vs. Florey: It All Comes Down to the Mold," The Histories: Vol. 2 : Iss. 1 , Article 3. Available at: https://digitalcommons.lasalle.edu/the_histories/vol2/iss1/3 This Paper is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in The iH stories by an authorized editor of La Salle University Digital Commons. For more information, please contact [email protected]. The Histories, Vol 2, No. 1 Page 3 Fleming vs. Florey: It All Comes Down to the Mold Kristen Hess Without penicillin, the world as it is known today would not exist. Simple infections, earaches, menial operations, and diseases, like syphilis and pneumonia, would possibly all end fatally, shortening the life expectancy of the population, affecting everything from family-size and marriage to retirement plans and insurance policies. So how did this “wonder drug” come into existence and who is behind the development of penicillin? The majority of the population has heard the “Eureka!” story of Alexander Fleming and his famous petri dish with the unusual mold growth, Penicillium notatum. Very few realize that there are not only different variations of the Fleming discovery but that there are also other people who were vitally important to the development of penicillin as an effective drug.
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • Journal of Radioanalytical and Nuclear Chemistry
    J Radioanal Nucl Chem (2013) 298:993–1003 DOI 10.1007/s10967-013-2497-8 A multi-method approach for determination of radionuclide distribution in trinitite Christine Wallace • Jeremy J. Bellucci • Antonio Simonetti • Tim Hainley • Elizabeth C. Koeman • Peter C. Burns Received: 21 January 2013 / Published online: 13 April 2013 Ó Akade´miai Kiado´, Budapest, Hungary 2013 Abstract The spatial distribution of radiation within trin- The results from this study indicate that the device-related ititethinsectionshavebeenmappedusingalphatrack radionuclides were preferentially incorporated into the radiography and beta autoradiography in combination with glassy matrix in trinitite. optical microscopy and scanning electron microscopy. Alpha and beta maps have identified areas of higher activity, Keywords Trinitite Á Nuclear forensics Á Radionuclides Á and these are concentrated predominantly within the surfi- Fission and activation products Á Laser ablation inductively cial glassy component of trinitite. Laser ablation-inductively coupled plasma mass spectrometry coupled plasma mass spectrometry (LA-ICP-MS) analyses conducted at high spatial resolution yield weighted average 235U/238Uand240Pu/239Pu ratios of 0.00718 ± 0.00018 (2r) Introduction and 0.0208 ± 0.0012 (2r), respectively, and also reveal the presence of some fission (137Cs) and activation products Nuclear proliferation and terrorism are arguably the gravest (152,154Eu). The LA-ICP-MS results indicate positive cor- of threats to the security of any nation. The ability to relations between Pu ion signal intensities and abundances decipher forensic signatures in post-detonation nuclear of Fe, Ca, U and 137Cs. These trends suggest that Pu in debris is essential, both to provide a deterrence and to trinitite is associated with remnants of certain chemical permit a response to an incident.
    [Show full text]
  • The Expert Panel on the Socio-Economic Impacts of Innovation Investments
    INNOVATION IMPACTS: MEASUREMENT AND ASSESSMENT The Expert Panel on the Socio-economic Impacts of Innovation Investments Science Advice in the Public Interest INNOVATION IMPACTS: MEASUREMENT AND ASSESSMENT The Expert Panel on the Socio-economic Impacts of Innovation Investments ii Innovation Impacts: Measurement and Assessment THE COUNCIL OF CANADIAN ACADEMIES 180 Elgin Street, Suite 1401, Ottawa, ON Canada K2P 2K3 Notice: The project that is the subject of this report was undertaken with the approval of the Board of Governors of the Council of Canadian Academies. Board members are drawn from the Royal Society of Canada (RSC), the Canadian Academy of Engineering (CAE), and the Canadian Academy of Health Sciences (CAHS), as well as from the general public. The members of the expert panel responsible for the report were selected by the Council for their special competencies and with regard for appropriate balance. This report was prepared in response to a request from the Ontario Ministry of Research and Innovation. Any opinions, findings, or conclusions expressed in this publication are those of the authors, the Expert Panel on the Socio-economic Impacts of Innovation Investments, and do not necessarily represent the views of their organizations of affiliation or employment. Library and Archives Canada Cataloguing in Publication Innovation impacts: measurement and assessment [electronic resource] : socio-economic impacts of innovation investments of the government of Ontario/ Council of Canadian Academies. Includes bibliographical references and index. Electronic monograph in PDF format. Issued also in print format. ISBN 978-1-926558-58-5 1. Public investments – Ontario – Measurement. 2. Public investments – Ontario – Evaluation. 3. Technological innovations – Government policy – Ontario.
    [Show full text]
  • Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
    ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3.
    [Show full text]
  • The Effect of Chemical Incidents on First Responders
    2019 The Effect of Chemical Incidents on First Responders: An Interview with Bruce Evans (MPA, NRP, CFOD, SEMSO), Fire Chief, Upper Pine River Fire Protection District A massive leak of liquefied chlorine gas created a dangerous cloud over the city of Henderson, NV, in the early morning hours of May 6, 1991. Over 200 people (including firefighters) were examined at a local hospital for respiratory distress caused by inhalation of the chlorine and approximately 30 were admitted for treatment. Approximately 700 individuals were taken to shelters, and between 2,000 and 7,000 individuals were evacuated from the area. ASPR TRACIE interviewed Chief Bruce Evans (who was a firefighter- paramedic at the time of the incident), asking him to share his my first large-scale incident: the experiences and highlight how the PEPCON explosion. PEPCON was Access these U.S. Fire Administration Technical Reports fire and emergency response to a rocket fuel plant that supplied propellant used for the space for more information on these chemical incidents has changed incidents: over the years. shuttle program. This explosion sent a shock wave over the • Fire and Explosions at Rocket Corina Solé Brito, ASPR TRACIE entire Las Vegas Valley, blew out Fuel Plant (CSB): Can you please share windows that were miles away, • Massive Leak of Liquefied your experience in Henderson and created a small, multicolored Chlorine Gas and other related incidents, how mushroom cloud on the south end you think the field has changed of the valley. The Professional since then, and what you think Golfers’ Association (PGA) was the future holds? also in town, so there were satellite or injuries from flying debris were I am fortunate trucks and news trucks present.
    [Show full text]
  • Title Liberation of Neutrons in the Nuclear Explosion of Uranium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Liberation of neutrons in the nuclear explosion of uranium Title irradiated by thermal neutrons Author(s) 萩原, 篤太郎 Citation 物理化學の進歩 (1939), 13(6): 145-150 Issue Date 1939-12-31 URL http://hdl.handle.net/2433/46203 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 9fii~lt~mi~~ Vol. 13n No. 6 (1939) i LIBERATION OF NEUTRONS.. IN THE NUCLEAR EXPLOSION OF URANIUM IRRADIATED BY THERMAL NEUTRONS By Tolai•r:vFo IIrtlsiNaaa 1'he discovery ivas first announced by Kahn and Strassmanlir'. that uranium under neutron irradiation is split by absorbing the neuttntis into two lighter elements of roughly equal weight and charge, being accompanied h}' a:very large amount of ~energy release. This leads to~ the consic(eration that these fission fragments would contain considerable ea-cess of neutrons as compared with the corresponding heaviest stable isotopes with the same nuclear charges, assuming a division into two parts only. Apart of these exceh neutrons teas found, in fact, to be disposed of by the subsequent (~-ray transformations of the fission products;" but another possibility of reducing the neutron excess seems to be a direct i nnissioie of the neutrons, .vhich would either be emitted as apart of explosiat products. almost i;istantaneously at the moment ofthe nuclear splitting or escape from hi~hh' excited nuclei of the residual fragments. It may, Clterefore,he ex- rd pected that the explosion process mould produce even larger number of secondary neutrons than one.
    [Show full text]
  • Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell the Radioactive Cloud Model
    Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell Modeling radioactive fallout from nuclear explosions requires a description of the radioactive cloud and base surge and an atmospheric transport model for the cloud dispersion. The atmospheric transport model is independent of the radioactive nature of the dust and I will stick to a simple model in this study. The Radioactive Cloud Model Radioactive Release The first stage in understanding the fallout from a nuclear explosion is to estimate the amount of radioactivity released into the atmosphere. For external exposure to radiation, the main threat is from gamma-rays. The average gamma-ray activity1 produced in a nuclear explosion has been calculated as 530 megacuries per kiloton of fission yield at one hour after the explosion, with an average photon energy of 0.7 MeV. The data available on underground nuclear tests focuses on the fraction of the total activity found in “early” or “close-in” fallout ( Fc ), which measures only those particles that have been deposited in the first 24 2 hours . The fraction of the total activity released into the atmosphere ( f rel ) is greater than what appears in 3 the early fallout ( f rel > Fc ). The fraction Fc is dependant on the scaled depth of burst . A summary of the activity release data available for U.S. and Soviet underground tests are shown in Tables 1, Table 2, and Figure 1. Table 1: Activity Released from U.S. Underground Nuclear Tests. Test Yield Depth of Burst Scaled Depth of Burst Fraction of Total Activity 1/3 (kt) (m) (m/kt ) in Early Fallout (Fc) Jangle Sa 1.2 0 0 0.50 Jangle Ua 1.2 5.18 4.88 0.64 Teapot ESSa 1.2 20.4 19.2 0.46 Schoonerb 30 111 35.8 0.48 Cabrioletb 2.3 51.8 39.3 0.028 Buggyb,c 1.08 41.1 40.1 0.038 Sedanb,d 100 194 41.7 0.18 Danny Boya 0.43 33.5 44.4 0.04 Sulkyb 0.088 27.4 61.6 0.001 Neptunea 0.115 30.5 62.7 0.005 Blancaa 19 255 95.4 0.0005 a) Release fraction from Knox-65, Table 1.
    [Show full text]
  • Uranium Mining and the U.S. Nuclear Weapons Program
    Uranium Mining and the U.S. Nuclear Weapons Program Uranium Mining and the U.S. Nuclear Weapons Program By Robert Alvarez Formed over 6 billion years ago, uranium, a dense, silvery-white metal, was created “during the fiery lifetimes and explosive deaths in stars in the heavens around us,” stated Nobel Laureate Arno Penzias.1 With a radioactive half-life of about 4.5 billion years, uranium-238 is the most dominant of several unstable uranium isotopes in nature and has enabled scientists to understand how our planet was created and formed. For at least the last 2 billion years, uranium shifted from deep in the earth to the rocky shell-like mantle, and then was driven by volcanic processes further up to oceans and to the continental crusts. The Colorado Plateau at the foothills of the Rocky Mountains, where some of the nation’s largest uranium deposits exist, began to be formed some 300 million years ago, followed later by melting glaciers, and erosion which left behind exposed layers of sand, silt and mud. One of these was a canary-yellow sediment that would figure prominently in the nuclear age. From 1942 to 1971, the United States nuclear weapons program purchased about 250,000 metric tons of uranium concentrated from more than 100 million tons of ore.2 Although more than half came from other nations, the uranium industry heavily depended on Indian miners in the Colorado Plateau. Until recently,3 their importance remained overlooked by historians of the atomic age. There is little doubt their efforts were essential for the United States to amass one of the most destructive nuclear arsenals in the world.
    [Show full text]