Oxygen Isotope Composition of Trinitite Postdetonation Materials Elizabeth C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bellucci Et Al. 2016 Trinitite Revised V Final
1 Direct Pb isotopic analysis of a nuclear fallout debris particle from the 2 Trinity nuclear test 3 4 5 Jeremy J. Bellucci1*, Joshua F. Snape1, Martin W. Whitehouse1, Alexander A. Nemchin1,2 6 7 *Corresponding author, email address: [email protected] 8 9 1Department of Geosciences, Swedish Museum of Natural History, SE-104 05 10 Stockholm, Sweden 11 2 Department of Applied Geology, Curtin University, Perth, WA 6845, Australia 12 13 Abstract 14 15 The Pb isotope composition of a nuclear fallout debris particle has been directly 16 measured in post-detonation materials produced during the Trinity nuclear test by a 17 secondary ion mass spectrometry (SIMS) scanning ion image technique (SII). This 18 technique permits the visual assessment of the spatial distribution of Pb and can be used 19 to obtain full Pb isotope compositions in user-defined regions in a 70 µm x 70 µm 20 analytical window. In conjunction with BSE and EDS mapping of the same particle, the 21 Pb measured in this fallout particle cannot be from a major phase in the precursor arkosic 22 sand. Similarly, the Pb isotope composition of the particle is resolvable from the 23 surrounding glass at the 2σ uncertainty level. The Pb isotope composition measured in 24 the particle here is in excellent agreement with that inferred from measurements of green 25 and red trinitite, suggesting that these types of particles are responsible for the Pb isotope 26 compositions measured in both trinitite glasses. 27 28 29 Keywords: 30 31 Trinitite, Trinity Test, Post Detonation Nuclear Forensics, Pb isotopes, SIMS, Scanning 32 Ion Imaging, Fallout Debris, Forensics 33 34 35 Introduction 36 37 In the event of a non-state sanctioned nuclear attack, forensic investigations will 38 be necessary to determine the provenance of the weapon and the materials used in 39 construction of the device. -
Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life ..................................................................... -
Journal of Radioanalytical and Nuclear Chemistry
J Radioanal Nucl Chem (2013) 298:993–1003 DOI 10.1007/s10967-013-2497-8 A multi-method approach for determination of radionuclide distribution in trinitite Christine Wallace • Jeremy J. Bellucci • Antonio Simonetti • Tim Hainley • Elizabeth C. Koeman • Peter C. Burns Received: 21 January 2013 / Published online: 13 April 2013 Ó Akade´miai Kiado´, Budapest, Hungary 2013 Abstract The spatial distribution of radiation within trin- The results from this study indicate that the device-related ititethinsectionshavebeenmappedusingalphatrack radionuclides were preferentially incorporated into the radiography and beta autoradiography in combination with glassy matrix in trinitite. optical microscopy and scanning electron microscopy. Alpha and beta maps have identified areas of higher activity, Keywords Trinitite Á Nuclear forensics Á Radionuclides Á and these are concentrated predominantly within the surfi- Fission and activation products Á Laser ablation inductively cial glassy component of trinitite. Laser ablation-inductively coupled plasma mass spectrometry coupled plasma mass spectrometry (LA-ICP-MS) analyses conducted at high spatial resolution yield weighted average 235U/238Uand240Pu/239Pu ratios of 0.00718 ± 0.00018 (2r) Introduction and 0.0208 ± 0.0012 (2r), respectively, and also reveal the presence of some fission (137Cs) and activation products Nuclear proliferation and terrorism are arguably the gravest (152,154Eu). The LA-ICP-MS results indicate positive cor- of threats to the security of any nation. The ability to relations between Pu ion signal intensities and abundances decipher forensic signatures in post-detonation nuclear of Fe, Ca, U and 137Cs. These trends suggest that Pu in debris is essential, both to provide a deterrence and to trinitite is associated with remnants of certain chemical permit a response to an incident. -
Lightning Strikes As a Major Facilitator of Prebiotic Phosphorus Reduction on Early Earth ✉ Benjamin L
ARTICLE https://doi.org/10.1038/s41467-021-21849-2 OPEN Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth ✉ Benjamin L. Hess 1,2,3 , Sandra Piazolo 2 & Jason Harvey2 When hydrated, phosphides such as the mineral schreibersite, (Fe,Ni)3P, allow for the synthesis of important phosphorus-bearing organic compounds. Such phosphides are com- mon accessory minerals in meteorites; consequently, meteorites are proposed to be a main 1234567890():,; source of prebiotic reactive phosphorus on early Earth. Here, we propose an alternative source for widespread phosphorus reduction, arguing that lightning strikes on early Earth potentially formed 10–1000 kg of phosphide and 100–10,000 kg of phosphite and hypo- phosphite annually. Therefore, lightning could have been a significant source of prebiotic, reactive phosphorus which would have been concentrated on landmasses in tropical regions. Lightning strikes could likewise provide a continual source of prebiotic reactive phosphorus independent of meteorite flux on other Earth-like planets, potentially facilitating the emer- gence of terrestrial life indefinitely. 1 Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. 2 School of Earth and Environment, Institute of Geophysics and Tectonics, The University of Leeds, Leeds, UK. 3 Department of Geology and Environmental Science, Wheaton College, Wheaton, IL, USA. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:1535 | https://doi.org/10.1038/s41467-021-21849-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21849-2 ife on Earth likely originated by 3.5 Ga1 with carbon isotopic Levidence suggesting as early as 3.8–4.1 Ga2,3. -
The Effect of Chemical Incidents on First Responders
2019 The Effect of Chemical Incidents on First Responders: An Interview with Bruce Evans (MPA, NRP, CFOD, SEMSO), Fire Chief, Upper Pine River Fire Protection District A massive leak of liquefied chlorine gas created a dangerous cloud over the city of Henderson, NV, in the early morning hours of May 6, 1991. Over 200 people (including firefighters) were examined at a local hospital for respiratory distress caused by inhalation of the chlorine and approximately 30 were admitted for treatment. Approximately 700 individuals were taken to shelters, and between 2,000 and 7,000 individuals were evacuated from the area. ASPR TRACIE interviewed Chief Bruce Evans (who was a firefighter- paramedic at the time of the incident), asking him to share his my first large-scale incident: the experiences and highlight how the PEPCON explosion. PEPCON was Access these U.S. Fire Administration Technical Reports fire and emergency response to a rocket fuel plant that supplied propellant used for the space for more information on these chemical incidents has changed incidents: over the years. shuttle program. This explosion sent a shock wave over the • Fire and Explosions at Rocket Corina Solé Brito, ASPR TRACIE entire Las Vegas Valley, blew out Fuel Plant (CSB): Can you please share windows that were miles away, • Massive Leak of Liquefied your experience in Henderson and created a small, multicolored Chlorine Gas and other related incidents, how mushroom cloud on the south end you think the field has changed of the valley. The Professional since then, and what you think Golfers’ Association (PGA) was the future holds? also in town, so there were satellite or injuries from flying debris were I am fortunate trucks and news trucks present. -
A Detailed Geochemical Investigation of Post-Nuclear Detonation Trinitite Glass at High Spatial Resolution: Delineating Anthropogenic Vs
Chemical Geology 365 (2014) 69–86 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: Delineating anthropogenic vs. natural components Jeremy J. Bellucci ⁎, Antonio Simonetti, Elizabeth C. Koeman, Christine Wallace, Peter C. Burns Department of Civil & Environmental Engineering & Earth Sciences, Notre Dame University, Notre Dame, IN 46556, United States article info abstract Article history: This study documents, for the first time, the combined abundances of major and trace elements at high spatial Received 24 March 2013 resolution for trinitite glass, which was produced during the first atomic weapon test (Trinity site; New Received in revised form 4 December 2013 Mexico, USA). The results indicate that the chemical composition of trinitite is largely dependent on the precursor Accepted 5 December 2013 mineral phases found in the arkosic sand at the Trinity site. The chemical compositions of trinitite were evaluated Available online 16 December 2013 using principal component analysis, which indicates that trends may be attributed to mixing between an anthro- Editor: L. Reisberg pogenic component and phases (both major and minor) within the arkosic sand. The resolvable anthropogenic component in trinitite is made up of metals including Al, Co, Cr, Cu, Fe, Ga, Mg, Mn, Nb, Pb, Ta, and Ti. Uranium Keywords: in trinitite appears to have two sources: natural U-bearing phases and the tamper used in the device. The concen- Nuclear forensics trations of volatile anthropogenic metals (Co, Cr, Cu, and Pb) are enriched in samples that originate from N74 m Trinity away from ground zero. -
Radioactivity in Trinitite Daniela Pittauerová1; William M
Radioactivity in Trinitite Daniela Pittauerová1; William M. Kolb 2; Jon C. Rosenstiel 3; Helmut W. Fischer 1 1 Institute of Environmental Physics, University of Bremen, Bremen, GERMANY, [email protected] 2 Retired, Edgewater, MD, U.S.A., 3 Retired, Anaheim, CA, U.S.A. Introduction RDS-1 Results and conclusions 1949 ATOMSITE - a fused glass-like material Trinity Gerboise Bleue Tab. 1: List of detected artificial gamma emitters in Trinitite and their origin 1945 1960 formed during ground - level nuclear tests Isotope Half-live (yr) Origin TRINITITE – a more widely used name for 60 Co 5.3 Activation of 59 Co – from test tower steel and from soil atomsite from Trinity site 133 132 Ba 10.5 Activation of Ba. Baratol - Ba (NO 3)2 - was part of explosive lens system of TRINITY – The World ´s first nuclear explosion, conducted in the desert in White Sands Missile the Trinity device Range, New Mexico, USA, on July 16, 1945. Plutonium bomb, detonated on a 30 m tower, yield 137 Cs 30.0 Fission product (beta decay of 137 Xe and 137 I and also independently) estimated to 20 kt TNT. 152, 154 151,153 RDS-1 (JOE-1) - The USSR first nuclear test at the Semipalatinsk site in Kazakhstan on August Eu 13.3 / 8.8 Activation of stable isotopes Eu in soil by slow neutrons 29, 1949. Plutonium bomb, design similar to that in Trinity, detonated on a 30 m tower, yield 155 Eu 4.8 Fission product, found to be detectable in Trinitite after more than 13 half-lives estimated to 20 kt TNT. -
Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell the Radioactive Cloud Model
Fallout Model for the Robust Nuclear Earth Penetrator Blake Purnell Modeling radioactive fallout from nuclear explosions requires a description of the radioactive cloud and base surge and an atmospheric transport model for the cloud dispersion. The atmospheric transport model is independent of the radioactive nature of the dust and I will stick to a simple model in this study. The Radioactive Cloud Model Radioactive Release The first stage in understanding the fallout from a nuclear explosion is to estimate the amount of radioactivity released into the atmosphere. For external exposure to radiation, the main threat is from gamma-rays. The average gamma-ray activity1 produced in a nuclear explosion has been calculated as 530 megacuries per kiloton of fission yield at one hour after the explosion, with an average photon energy of 0.7 MeV. The data available on underground nuclear tests focuses on the fraction of the total activity found in “early” or “close-in” fallout ( Fc ), which measures only those particles that have been deposited in the first 24 2 hours . The fraction of the total activity released into the atmosphere ( f rel ) is greater than what appears in 3 the early fallout ( f rel > Fc ). The fraction Fc is dependant on the scaled depth of burst . A summary of the activity release data available for U.S. and Soviet underground tests are shown in Tables 1, Table 2, and Figure 1. Table 1: Activity Released from U.S. Underground Nuclear Tests. Test Yield Depth of Burst Scaled Depth of Burst Fraction of Total Activity 1/3 (kt) (m) (m/kt ) in Early Fallout (Fc) Jangle Sa 1.2 0 0 0.50 Jangle Ua 1.2 5.18 4.88 0.64 Teapot ESSa 1.2 20.4 19.2 0.46 Schoonerb 30 111 35.8 0.48 Cabrioletb 2.3 51.8 39.3 0.028 Buggyb,c 1.08 41.1 40.1 0.038 Sedanb,d 100 194 41.7 0.18 Danny Boya 0.43 33.5 44.4 0.04 Sulkyb 0.088 27.4 61.6 0.001 Neptunea 0.115 30.5 62.7 0.005 Blancaa 19 255 95.4 0.0005 a) Release fraction from Knox-65, Table 1. -
Development of Synthetic Nuclear Melt Glass for Forensic Analysis
J Radioanal Nucl Chem (2015) 304:1293–1301 DOI 10.1007/s10967-015-3941-8 Development of synthetic nuclear melt glass for forensic analysis Joshua J. Molgaard • John D. Auxier II • Andrew V. Giminaro • C. J. Oldham • Matthew T. Cook • Stephen A. Young • Howard L. Hall Received: 12 February 2014 / Published online: 20 January 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract A method for producing synthetic debris simi- proliferation and nuclear terrorism is a continued and lar to the melt glass produced by nuclear surface testing is growing concern [1]. This threat has been recognized by demonstrated. Melt glass from the first nuclear weapon test congress and was the primary motivation for the passage of (commonly referred to as trinitite) is used as the benchmark the Nuclear Forensics and Attribution Act [2]. This act for this study. These surrogates can be used to simulate a called for the development of a credible capability for variety of scenarios and will serve as a tool for developing identifying sources of nuclear material used in a terrorist and validating forensic analysis methods. act, and also acknowledged the challenge presented by the dwindling number of radiochemical programs and facilities Keywords Debris Á Nuclear weapons Á Nuclear in the United States. forensics Á Trinitite Á Melt glass Á Morphology The Radiochemistry Center of Excellence (RCoE) established at the University of Tennessee (UT) by the National Nuclear Security Administration (NNSA) seeks to Introduction partially fill the academic gap and meet the challenges identified in the Nuclear Forensics Attribution Act. -
Trinity Site July 16, 1945
Trinity Site July 16, 1945 "The effects could well be called unprecedented, magnificent, beauti ful, stupendous, and terrifying. No man-made phenomenon of such tremendous power had ever occurred before. The lighting effects beggared description. The whole country was lighted by a searing light with the intensity many times that of the midday sun." Brig. Gen. Thomas Farrell A national historic landmark on White Sands Missile Range -- www.wsmr.army.mil Radiation Basics Radiation comes from the nucJeus of the gamma ray. This is a type of electromag individual atoms. Simple atoms like oxygen netic radiation like visible light, radio waves are very stable. Its nucleus has eight protons and X-rays. They travel at the speed of light. and eight neutrons and holds together well. It takes at least an inch of lead or eight The nucJeus of a complex atom like inches of concrete to stop them. uranium is not as stable. Uranium has 92 Finally, neutrons are also emitted by protons and 146 neutrons in its core. These some radioactive substances. Neutrons are unstable atoms tend to break down into very penetrating but are not as common in more stable, simpler forms. When this nature. Neutrons have the capability of happens the atom emits subatomic particles striking the nucleus of another atom and and gamma rays. This is where the word changing a stable atom into an unstable, and "radiation" comes from -- the atom radiates therefore, radioactive one. Neutrons emitted particles and rays. in nuc!ear reactors are contained in the Health physicists are concerned with reactor vessel or shielding and cause the four emissions from the nucleus of these vessel walls to become radioactive. -
In the Shadow of the Mushroom Cloud: Nuclear Testing, Radioactive Fallout and Damage to U.S. Agriculture
In the Shadow of the Mushroom Cloud: Nuclear Testing, Radioactive Fallout and Damage to U.S. Agriculture September 1, 2017 Abstract In the 1950s the United States conducted scores of nuclear tests at the Nevada Test Site (NTS). Each test created tremendous quantities of harmful radioactive material and much of this material deposited across the country with precipitation. This paper is the first in the economics literature to measure some of the external costs of NTS activities. I find that fallout from nuclear tests adversely affected U.S. agriculture for large areas of the country. These empirical results show that nuclear testing had much broader economic and environmental impact than previously thought. The Cold War saw the rapid development and deployment of nuclear weapons. To expedite its nuclear weapons program, the United States started to conduct atmospheric nuclear tests at the Nevada Test Site (NTS) in 1951. This deliberate policy decision created immense quantities of radioactive debris and much of this material rained down across the U.S.. One estimate places the total atmospheric release of radioactive material from the NTS from 1951 to 1963 at 12 billion Curies. In comparison, the partial nuclear meltdown at Chernobyl released approximately 81 million Curies of radioactive material (LeBaron, 1998). Knowledge regarding the impact of this pollution is limited to scientific and health studies conducted in the regions surrounding the NTS. Nuclear testing had large pollution externalities associated with it, but the magnitude and extent of the nationwide harm caused by NTS activities have yet to be measured. This paper quantifies one dimension of the external costs of these activities by studying the adverse effects of radioactive fallout on U.S. -
Magnox Corrosion
Department Of Materials Science & Engineering From Magnox to Chernobyl: A report on clearing-up problematic nuclear wastes Sean T. Barlow BSc (Hons) AMInstP Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, UK IOP Nuclear Industry Group, September 28 | Warrington, Cheshire, UK Department Of Materials Science & Engineering About me… 2010-2013: Graduated from University of Salford - BSc Physics (Hons) Department Of Materials Science & Engineering About me… 2013-2018: Started on Nuclear Fission Research Science and Technology (FiRST) at the University of Sheffield Member of the Immobilisation Science Laboratory (ISL) group • Wasteforms cement, glass & ceramic • Characterisation of materials (Trinitite/Chernobylite) • Corrosion science (steels) Department Of Materials Science & Engineering Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Department Of Materials Science & Engineering 2017: Junior Project Manager at DavyMarkham Department Of Materials Science & Engineering PhD projects… 4 main projects 1. Magnox waste immobilisation in glass 2.