Uranium Mining and the U.S. Nuclear Weapons Program
Total Page:16
File Type:pdf, Size:1020Kb
Uranium Mining and the U.S. Nuclear Weapons Program Uranium Mining and the U.S. Nuclear Weapons Program By Robert Alvarez Formed over 6 billion years ago, uranium, a dense, silvery-white metal, was created “during the fiery lifetimes and explosive deaths in stars in the heavens around us,” stated Nobel Laureate Arno Penzias.1 With a radioactive half-life of about 4.5 billion years, uranium-238 is the most dominant of several unstable uranium isotopes in nature and has enabled scientists to understand how our planet was created and formed. For at least the last 2 billion years, uranium shifted from deep in the earth to the rocky shell-like mantle, and then was driven by volcanic processes further up to oceans and to the continental crusts. The Colorado Plateau at the foothills of the Rocky Mountains, where some of the nation’s largest uranium deposits exist, began to be formed some 300 million years ago, followed later by melting glaciers, and erosion which left behind exposed layers of sand, silt and mud. One of these was a canary-yellow sediment that would figure prominently in the nuclear age. From 1942 to 1971, the United States nuclear weapons program purchased about 250,000 metric tons of uranium concentrated from more than 100 million tons of ore.2 Although more than half came from other nations, the uranium industry heavily depended on Indian miners in the Colorado Plateau. Until recently,3 their importance remained overlooked by historians of the atomic age. There is little doubt their efforts were essential for the United States to amass one of the most destructive nuclear arsenals in the world. By the 1970s an estimated 3,000 to 5,000 of the 12,000 miners employed in the United States were Navajos. 4 5 From the late 1940s to the mid-1960s, they dug up nearly 4 million tons of uranium ore – nearly a quarter of the total national underground production in the United 1 Arno A. Penzias, the Origin of Elements, Nobel Lecture, December 6, 1978. http://www.nobelprize.org/nobel_prizes/physics/laureates/1978/penzias-lecture.pdf 2 U.S. Atomic Energy Commission, Statistical Data of the Uranium Industry, January 1, 1972. P.8 3 The Navajo People and Uranium Mining, Doug Brugge, Timothy Benally, and Ester Yazzie Lewis (eds), University of New Mexico Press (2007). 4 Statement by Robert G. McSwain, Director, Indian Health Services, U.S. Department of Health and Human Services, on the Health and Environmental Impact of Uranium Mining on the Navajo Nation before the Committee on Government Oversight and Reform, United States House of Representatives, October 23, 2007. http://www.hhs.gov/asl/testify/2007/10/t20071023e.html 5 High Beam Business Service, Uranium-Radium-Vanadium Ores, NAICS 212291: Uranium-Radium-Vanadium Ore Mining, Industry Report, The Gale Group Inc. (2013). http://business.highbeam.com/industry-reports/mining/uranium-radium- vanadium-ores Public Interest Report | Fall 2013 – Volume 66 Number 4 Uranium Mining and the U.S. Nuclear Weapons Program States.6 In doing so they were sent into harm’s way without their knowledge, becoming the most severely exposed group of workers to ionizing radiation in the U.S. nuclear weapons complex. For minimum wage or less, they blasted open seams of ore, built wooden beam supports in the mine shafts, and dug out ore pieces with picks and wheel barrows. The shafts were as deep as 1,500 feet with little or no ventilation. The bitter tasting dust was all pervasive, coating their teeth and causing chronic coughing. They ate in the mines and drank water that dripped from the walls. The water contained high quantities of radon – a radioactive gas emanating from the ore. Radon decays into heavy, more radiotoxic isotopes called “radon daughters,” which include isotopes of polonium, bismuth, and lead. Radon daughters’ alpha particle emissions are considered to be about 20 times more carcinogenic than x-rays. 7 As they lodge in the respiratory system, especially the deep lung, radon daughters emit energetic ionizing radiation that can damage cells of sensitive internal tissues. The miners were never warned of the hazards of radioactivity in the mines in which they inhaled, ingested and brought home along with their contaminated clothing. Withholding information about the hazards of the workplace was deeply embedded in the bureaucratic culture of the nuclear weapons program. In 1994, a previously secret document (written in the late 1940s) was made public by the Department of Energy which crystallized the long-held rationale for keeping nuclear workers in the dark. “We can see the possibility of a shattering effect on the morale of the employees if they become aware that there was substantial reason to question the standards of safety under which they are working. In the hands of labor unions the results of this study would add substance to demands for extra-hazardous pay . knowledge of the results of this study might increase the number of claims of occupational injury due to radiation.”8 Kee Begay worked in the mines for 29 years and was dying of lung cancer. “The mines were poor and not fit for human beings,” he testified at a citizen’s hearing in 1980. Begay also lost a son to cancer. “He was one of many children that used to play on the uranium piles during those years. We had a lot 6 U.S. Environmental Protection Agency, Office of Radiation Protection and Indoor Air, Technical Report On Technologically Enhances Naturally Occurring Radioactive Materials, Uranium Mining, Volume 1: Mining and Reclamation Background, EPA 402-R-08-005, April 2008. http://www.epa.gov/radiation/docs/tenorm/402-r-08-005-voli/402-r-08-005-v1.pdf 7 Recommendations of the International Commission on Radiological Protection. (1990) ICRP Publication 60. Ann. ICRP 21 (1-3). 8 Report of the President’s Advisory Committee on Human Radiation Experiments, Part II, Chapter 13, http://www.eh.doe.gov/ohre/roadmap/achre/chap13_3.html Public Interest Report | Fall 2013 – Volume 66 Number 4 Uranium Mining and the U.S. Nuclear Weapons Program of uranium piles near our homes –just about fifty or a hundred feet away or so. Can you imagine? Kids go out and play on those piles.” 9 For many years the Navajos and other tribes living in the Colorado Plateau used uranium ore in sand paintings and for body adornment. By 1896 samples of this ore were passed along to mineralogists at the Smithsonian Institute in Washington, D.C. Initially confounded by its properties, the Smithsonian experts concluded this was an extremely rare mineral containing uranium and vanadium. That same year, French physicist Antoine Henri Becquerel discovered that uranium crystals emitted “luminous rays” on photographic plates. Two years later, Becquerel’s colleagues Marie and Pierre Curie painstakingly extracted tiny amounts of two new elements that they named polonium and radium from several tons of uranium ore in an abandoned shed in Paris. Emitting millions of times more of these mysterious rays than uranium, Marie Curie coined the term “radioactivity” to describe their energetic properties. News of the discovery in Colorado came quickly to the Curies, who were seeking richer ores than those from eastern Germany. In 1897, aware of growing scientific interest in their native country, chemists Henry Poulot and Charles Volleque (who lived in Colorado), purchased 10 tons of this mysterious ore and sent samples to the Paris School of Mines in France,10 where they were also analyzed by Marie Curie. 11 A year later it was named Carnotite after Aldophe Carnot, the Inspector General of French mines. By 1910, a 20 by 60 mile oval strip of carnotite with countless visible swaths of canary-yellow became one of the world’s first major radioactive metal discoveries – helping to usher in the nuclear age. By 1912, nearly all of the uranium ore went to European firms. Its vanadium content (used to harden steel), came into heavy demand during World War I for use in armaments as it would during World War II. The Colorado Plateau became one of the world’s most important sources of radium, which at a price of $160,000 a gram in 1913 became the most precious substance in the world. About three tons of uranium contained one gram of radium. Half went for use in medicine and the rest was used for luminous paint on dials and other instruments. 9 Invisible Violence, Proceedings of the National Citizen’s Hearings for Radiation Victims, April 10-14, 1980. 10 W.L. Dare, R.A. Lindblom and J.H. Soule, Uranium Mining on the Colorado Plateau, Information Circular 7726, U.S. Department of Interior, Bureau of Mines, September 1953. http://mines.az.gov/DigitalLibrary/usbm_ic/USBMIC7726UraniumMiningColoradoPlateau.pdf 11 Op Cit Ref. 28. Public Interest Report | Fall 2013 – Volume 66 Number 4 Uranium Mining and the U.S. Nuclear Weapons Program By the mid-1920s, the U.S. uranium boom ended when far richer deposits were found in the Shinkolobwe mine in the Belgian Congo. While uranium mining continued in Colorado, the Union Minière du Haut Katanga (UMHK) of Belgium dominated the world uranium market. In the shadow of the highly lucrative radium boom, a revolutionary and fiercely competitive scientific exploration of its 12 radioactive properties would reveal the enormous energy contained in the atoms of uranium. 12 Three years before his accidental death in 1906, Pierre Curie reported that “'the energy involved in the transformation of the atom [of radium] is considerable.” The Curies’ discovery of radium inspired Albert Einstein in 1905 to describe, almost as an afterthought in his fifth paper that year, a phenomenon involving the interchangeability of matter and energy by his Special Theory of Relativity.