Conference Program (7.3MB PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Conference Program (7.3MB PDF) The Second International Conference on Duckweed Research and Applications August 21 – 24, 2013 School of Environmental and Biological Sciences Rutgers, The State University of New Jersey New Brunswick, New Jersey, USA Program & Abstracts The Second International Conference on Duckweed Research and Applications In Dedication to Elias Landolt (1926 – 2013) Dr. Elias Landolt started collecting duckweed in the early 1950s as a young researcher. He likely did not foresee how important this seemingly unimpressive endeavor would turn out to be in the future. Elias not only collected these tiny plants but also systematically classified them, which gave his ever growing collection the rank it still holds today: the gold standard for duckweed research. He made significant contributions to the description of duckweed morphology, geobotany and even physiology. His monographs on duckweed systematics, physiology and biochemistry are considered bibles in the field to this day. In addition to establishing the largest collection of duckweed in the world over the last half century, Elias was well appreciated by his colleagues for his generous sharing of strains as well as providing sage advice upon request. Even in his final days when he was battling serious illness, he continued to assist and train researchers. We fondly remember our visit with Elias during Autumn 2011 when we collected duckweed strains together in Zurich. His enthusiasm for science was infectious and his knowledge about duckweed was truly inspirational. Considering the rising importance of duckweed at this time when sustainable production of biomass for fuel and feed are urgent problems facing humanity, the resources that were established by Elias are more important than ever. The soon-to-be completed genome sequencing of multiple Spirodela strains from the Landolt collection is a good example of the benefits that the scientific community is now beginning to reap from Elias' work. In the coming years, we expect to see an exponential rise in the growth of duckweed research and applications that will leverage the resources enabled by Elias' efforts. We therefore dedicate this meeting to acknowledge the contributions of his life-long passion for duckweed. We hope Elias' inspirational vision and steadfast dedication to the pursuit and sharing of knowledge will serve as a role model for us all in this turbulent time when fundamental changes in the way we manage our planet's resources will determine the sustainability of our world. A figure from The family of Lemnaceae – a monographic study (1986) by Elias Landolt – Eric Lam and Klaus Appenroth i The Second International Conference on Duckweed Research and Applications Organizing Committee Eric Lam Rutgers, The State University of New Jersey Jay J. Cheng North Carolina State University Robert Martienssen Cold Spring Harbor Laboratory Todd Michael IBIS Biosciences Tamra Fakhoorian International Lemna Association Ryan Integlia em[POWER] Energy Group Host School of Environmental and Biological Sciences Rutgers, The State University of New Jersey New Brunswick, New Jersey, USA Sponsors Administrative Support Ryan Gutierrez, Philomena Chu, Feronda Long & Linda Anthony .............................................. Logistics Dalynn Knigge & Bianca Scardina ................................................................................... Online Registration Phil Wisneski ..................................................................................................................................... Web Design Barbara Fitzgerald .................................................................................................................. Business Manager ii The Second International Conference on Duckweed Research and Applications Introduction The quest for sustainable production of biomass and renewable fuels with low carbon footprints has become a global priority. They are needed to produce food and nutrition for an estimated 9 billion people on this planet by 2050. Also, the expected decline in fossil fuel production and the need to curb climate change are urgent issues facing humanity in this decade. Creating and adopting new biomass and fuel production platforms that are environmentally and economically sustainable will be essential, but pose a formidable challenge to scientists, engineers and entrepreneurs. In our consideration of alternative sources of renewable biomass that can be "domesticated" for energy production as well as other products, we believe the Lemnaceae family of aquatic plants, commonly called duckweed, holds great potential as a commercially viable feedstock for fuel and feed production driven by sunlight. The chief characteristics that make duckweed ideal for waste-to- energy conversion are their rapid growth rate (up to 120 ton dry mass/hectare/yr) and their ability to grow directly on existing wastewater sites. Importantly, their natural growth characteristics also provide simple harvest strategies. Together with low lignin content and a large surface area to body mass ratio, duckweed provides a promising platform for sustainable biomass production coupled to reclamation of wastewater from different sources. To accelerate development of new businesses and products that are based on these aquatic plants as a novel micro-crop, we are organizing an international workshop with the aim to bring researchers and entrepreneurs together for sharing of information and networking for project development. These efforts will leverage and extend the traditional use of duckweed for plant systematics and biomonitoring of environmental contaminants. Several recent advances in this field should make this conference extremely timely: (1) Quantification of the potential of duckweed for bioethanol and biomass production in pilot scale studies, (2) Completion of the first reference genome of the Greater Duckweed Spirodela polyrhiza, (3) Formation of the International Lemna Association as a nascent grassroots effort to promote the advancements of duckweed- related applications and public awareness, and (4) Recent recognition of duckweed as an additional "feedstock" crop in a proposed tax relief bill by the U.S. government, which signals the emerging acceptance and promotion of the duckweed industry. The International Conference on Duckweed Research and Applications will focus on facilitating close interactions and coordination between duckweed researchers and application specialists from emerging industries. This workshop will be pivotal for charting a new course of development for this novel micro-crop system through creating a new sense of teamwork and focus in the duckweed community. Working together, we can then realize the great promise of these remarkable plants to alleviate urgent problems of water conservation and biomass production facing our planet. Eric Lam Conference Chair iii The Second International Conference on Duckweed Research and Applications Important Contact Information Eric Lam Conference Chair Mobile: (XXX) XXX-XXXX Email: [email protected] Ryan Gutierrez Conference Coordinator Mobile: (XXX) XXX-XXXX Email: [email protected] Rutgers University Inn and Conference Center Phone: (732) 932-9144 Email: [email protected] Wireless Internet Access Network: RUWireless Username: duckweed2013 Password: duckweed iv The Second International Conference on Duckweed Research and Applications Table of Contents Conference Venues .............................................................................................................................................. 1 Daily Schedule ...................................................................................................................................................... 2 Abstracts for Lectures ......................................................................................................................................... 6 Abstracts for Posters ......................................................................................................................................... 19 List of Participants ............................................................................................................................................. 24 v The Second International Conference on Duckweed Research and Applications Conference Venues Registration ..................................................... Foran Hall Lobby Lectures ........................................................... Foran Hall, Room 138A Poster Sessions ............................................... Foran Hall Lobby Breakfast, Lunch & Coffee/Snacks ............ Foran Hall, Room 138B Dinner ............................................................. University Inn & Conference Center Conference Venues 1 The Second International Conference on Duckweed Research and Applications Daily Schedule Wednesday, August 21 2:00 – 7:00 PM Registration of Attendees (Foran Lobby) 2:00 – 4:30 PM Reception with Snacks and Refreshments in Foran 138B 4:30 – 6:10 PM SESSION 1: CONFERENCE OPENING 4:30 PM Welcoming Address by Bradley Hillman, Senior Associate Director, New Jersey Agricultural Experiment Station, Rutgers University 4:45 PM Opening Address by Conference Chair: Eric Lam, Rutgers University 5:00 PM Plenary Lecture: “Introduction to thermochemical technologies for production of fuels and biobased products” (L1) Mark Wright, Iowa State University, Ames, IA, USA 6:00 PM Welcoming Remarks by Robert Goodman, Executive Dean, School of Environmental and Biological
Recommended publications
  • Feedstock List (As of 3/2018)
    Feedstock List (as of 3/2018) FOG: Fats / Oils / Greases Wastes / Oil Seeds Algae / Aquatic Species Industrial Aloe (Aloe vera) Meadowfoam (Limnanthes alba) Brown grease Cyanobacteria Babassu (Attalea speciosa) Mustard (Sinapis alba) Crude glycerine Halophytes (e.g., Salicornia bigelovii) *Camelina (Camelina sativa)* Nuts Fish oil Lemna (Lemna spp.) *Canola, winter (Brassica napus[occasionally rapa Olive (Olea europaea) Industrial effluent (palm) Macroalgae or campestris])* *Carinata (Brassica carinata)* Palm (Elaeis guineensis) Shrimp oil (Caridea) Mallow (Malva spp.) Castor (Ricinus communis) Peanut, Cull (Arachis hypogaea) Tall oil pitch Microalgae Citrus (Citron spp.) Pennycress (Thlaspi arvense) Tallow / Lard Spirodela (Spirodela polyrhiza) Coconut (Cocos nucifera) Pongamia (Millettia pinnata) White grease Wolffia (Wolffia arrhiza) Corn, inedible (Zea mays) Poppy (Papaver rhoeas) Waste vegetable oil Cottonseed (Gossypium) *Rapeseed (Brassica napus)* Yellow grease Croton megalocarpus Oryza sativa Croton ( ) Rice Bran ( ) Cuphea (Cuphea viscossisima) Safflower (Carthamus tinctorius) Flax / Linseed (Linum usitatissimum) Sesame (Sesamum indicum) Gourds / Melons (Cucumis melo) Soybean (Glycine max) Grapeseed (Vitis vinifera) Sunflower (Helianthus annuus) Hemp seeds (Cannabis sativa) Tallow tree (Triadica sebifera) Jojoba (Simmondsia chinensis) Tobacco (Nicotiana tabacum) Jatropha (Jatropha curcas) Calophyllum inophyllum Kamani ( ) Lesquerella (Lesquerella fenderi) Cellulose Woody Grasses Residues Other Types: Arundo (Arundo donax) Bagasse
    [Show full text]
  • C12) United States Patent (IO) Patent No.: US 10,011,854 B2 San Et Al
    I 1111111111111111 1111111111 11111 1111111111 11111 1111111111111111 IIII IIII IIII US010011854B2 c12) United States Patent (IO) Patent No.: US 10,011,854 B2 San et al. (45) Date of Patent: Jul. 3, 2018 (54) FATTY ACID PRODUCTIVITY WO W02012052468 4/2012 WO WO 2012-087963 * 6/2012 (71) Applicant: WILLIAM MARSH RICE WO WO 2012-109221 * 8/2012 WO W02013059218 4/2013 UNIVERSITY, Houston, TX (US) WO W02013096665 6/2013 (72) Inventors: Ka-Yiu San, Houston, TX (US); Wei OTHER PUBLICATIONS Li, Houston, TX (US) Whisstock et al. Quaterly Reviews of Biophysics, 2003, "Prediction (73) Assignee: William Marsh Rice University, of protein function from protein sequence and structure", 36(3): Houston, TX (US) 307-340.* Witkowski et al. Conversion of a beta-ketoacyl synthase to a ( *) Notice: Subject to any disclaimer, the term ofthis malonyl decarboxylase by replacement of the active-site cysteine patent is extended or adjusted under 35 with glutamine, Biochemistry. Sep. 7, 1999;38(36)11643-50.* U.S.C. 154(b) by O days. Kisselev L., Polypeptide release factors in prokaryotes and eukaryotes: same function, different structure. Structure, 2002, vol. 10: 8-9.* (21) Appl. No.: 15/095,158 Gurvitz Aner, The essential mycobacterial genes, fabG 1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast (22) Filed: Apr. 11, 2016 mitochondrial fatty acid synthase type 2, Mo! Genet Genomics (2009), 282: 407-416.* (65) Prior Publication Data Bergler H, et a., Protein EnvM is the NADH-dependent enoyl-ACP reductase (Fahl) of Escherichia coli, J Biol Chem. 269(8):5493-6 US 2016/0215309 Al Jul.
    [Show full text]
  • Phylogeny and Systematics of Lemnaceae, the Duckweed Family
    Systematic Botany (2002), 27(2): pp. 221±240 q Copyright 2002 by the American Society of Plant Taxonomists Phylogeny and Systematics of Lemnaceae, the Duckweed Family DONALD H. LES,1 DANIEL J. CRAWFORD,2,3 ELIAS LANDOLT,4 JOHN D. GABEL,1 and REBECCA T. K IMBALL2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043; 2Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210; 3Present address: Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas 66045-2106; 4Geobotanisches Institut ETH, ZuÈ richbergstrasse 38, CH-8044, ZuÈ rich, Switzerland Communicating Editor: Jeff H. Rettig ABSTRACT. The minute, reduced plants of family Lemnaceae have presented a formidable challenge to systematic inves- tigations. The simpli®ed morphology of duckweeds has made it particularly dif®cult to reconcile their interspeci®c relation- ships. A comprehensive phylogenetic analysis of all currently recognized species of Lemnaceae has been carried out using more than 4,700 characters that include data from morphology and anatomy, ¯avonoids, allozymes, and DNA sequences from chloroplast genes (rbcL, matK) and introns (trnK, rpl16). All data are reasonably congruent (I(MF) , 6%) and contributed to strong nodal support in combined analyses. Our combined data yield a single, well-resolved, maximum parsimony tree with 30/36 nodes (83%) supported by bootstrap values that exceed 90%. Subfamily Wolf®oideae is a monophyletic clade with 100% bootstrap support; however, subfamily Lemnoideae represents a paraphyletic grade comprising Landoltia, Lemna,and Spirodela. Combined data analysis con®rms the monophyly of Landoltia, Lemna, Spirodela, Wolf®a,andWolf®ella.
    [Show full text]
  • Differential Effects of Synthetic Media on Long-Term Growth, Starch
    www.nature.com/scientificreports OPEN Diferential efects of synthetic media on long-term growth, starch accumulation and transcription of ADP-glucosepyrophosphorylase subunit genes in Landoltia punctata Chokchai Kittiwongwattana Murashige & Skoog (MS) and Hoagland’s media were previously used for in vitro culture of Landoltia punctata. During subsequent ex vitro culture, the use of MS medium resulted in a higher growth rate, compared to Hoagland’s medium. Thus, a higher starch content of L. punctata in MS medium was previously hypothesized. Here, L. punctata strain 5632 was isolated and characterized using morphological characteristics and the atpF-atpH intergenic region. During early cultivation stage, fresh weight and relative growth rate in MS medium were lower than Hoagland’s medium. Conversely, starch content in MS medium was considerably higher than in Hoagland’s medium. Medium efects on expression of genes coding for starch-biosynthesis ADP-glucosepyrophosphorylase (AGPase) were determined. Genomic fragments of small (LeAPS) and large (LeAPL1) AGPase subunits were characterized. Diferential expression between each AGPase subunit genes was observed in both media. Additionally, in MS medium, the highest correlation coefcients between starch content and gene expression was found with LeAPS (0.81) and followed by LeAPL3 (0.67), LeAPL2 (0.65) and LeAPL1 (0.28). In Hoagland’s medium, the coefcients of LeAPL3 (0.83) and LeAPL2 (0.62) were higher than LeAPS (0.18) and LeAPL1 (−0.62). This suggested diferent levels of contributions of these genes in starch biosynthesis in both media. Starch functions as an important energy reserve in plants1. During photosynthesis, carbon compounds are generated and converted into glucose that serves as the precursor for starch formation1.
    [Show full text]
  • Prevention of Muddy Taints in Farmed Barramundi
    Prevention of muddy taints in farmed Barramundi Sue Poole and Paul Exley Project No. 2009/775 February 2015 This project was conducted by: Department of Agriculture and Fisheries Queensland Government 39 Kessels Road, Coopers Plains, Brisbane In collaboration with: Australian Barramundi Farmers Association PO Box 26, Cooroy, QLD 4563 ISBN: 978 0 7345 0447 0 Copyright, 2012: The Seafood CRC Company Ltd, the Fisheries Research and Development Corporation and [Insert other organisations here]. This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Australian Seafood CRC is established and supported under the Australian Government’s Cooperative Research Centres Program. Other investors in the CRC are the Fisheries Research and Development Corporation, Seafood CRC company members, and supporting participants. Office Mark Oliphant Building, Laffer Drive, Bedford Park SA 5042 Postal Box 26, Mark Oliphant Building, Laffer Drive, Bedford Park SA 5042 Tollfree 1300 732 213 Phone 08 8201 7650 Facsimile 08 8201 7659 Website www.seafoodcrc.com ABN 51 126 074 048 Important Notice Although the Australian Seafood CRC has taken all reasonable care in preparing this report, neither the Seafood CRC nor its officers accept any liability from the interpretation or use of the information set out in this document. Information contained in this document is subject to change without notice. - - 2 - - Non-Technical Summary Seafood CRC 2009/775 Prevention of muddy taints in farmed barramundi PRINCIPAL INVESTIGATOR: Sue Poole Innovative Food Technologies Department of Agriculture and Fisheries Queensland Government [email protected] Mob 0428 101 032 ADDRESS: 39 Kessels Road, Coopers Plains Brisbane QLD 4108 PROJECT OBJECTIVES: 1.
    [Show full text]
  • 0615 Ingredients Column
    [INGREDIENTS] PREVIEW By Karen Nachay and Melanie Zanoza Bartelme Chicago Will Be the Ingredients Capital in July or more than a century, Chicago of candy capital of the world because spices and flavorings for sauces, leav- has been a mecca of food product of the large number of confectionery ening agents and grains for bread, Fdevelopment and culinary explora- manufacturers located in and around antimicrobials to keep meat safe, and tion. The city is even named for a food; the city. And Carl Sandburg in his oils with less saturated fat and more the name Chicago derives from a word poem “Chicago” called the city “hog monounsaturated fat—that and so that local Native Americans gave to butcher for the world,” a reference to much more are all represented. And wild leeks. Chicago’s location on Lake the Union Stock Yards, which from what is a food show without samples? Michigan and the waterways that 1865 until they closed in 1971, pro- Exhibitors plan to feature their top connected it to the Mississippi River cessed more than one billion animals. ingredients in such product concepts as well as it being a central hub for Much of the confection manufac- as Reduced-Sugar Root Beer Craft railroads contributed to the growth of turing has moved elsewhere, and the Soda, Savory Kimchi Pancake, High- industry, including food manufactur- only structure that exists of the infa- Protein Pudding, and Pie-Flavored ing. The significant population growth mous Union Stock Yards is a limestone Milk Shakes. from the mid-19th century through the arch called the Union Stock Yard Gate.
    [Show full text]
  • 2021 Junior Division Finalists' Abstracts
    Junior Division Animal Sciences Raeya Schrock JR-AS-002 Infrared Thermography to Enhance Livestock Health The purpose of the researcher’s project is to become familiar with using thermography and interpreting thermograms as a useful tool for early detection of labor in heifers, heart failure in fat cattle and determining the extent of localized infection. It is predicted that thermal imagining will be able to detect health issues in beef cattle before the problems become apparent to the naked eye. Thermograms were generated using a FLIR ONE Gen 3 Thermal Camera with a MSX Image Enhancement Technology Attachment. The researcher compared pallets “Contrast”, “Iron” and “Hottest”. Thermograms were analyzed to pinpoint inflammation and identify animal distress. Infrared thermographic technology is most accurate and useful at identifying localized inflammation and infected areas where as the accuracy diminishes with distance from the animal. Thermography pointed inside the ear proved to be an accurate indicator of animal temperature. The “Contrast” setting proved more detailed compared to the “iron” pallet. Dorothy Berger JR-AS-003 Pet Stress Management with Music The number of puppies being adopted has dramatically increased in the past year due to the pandemic and many people being stuck at home. The new dog owners are going to need ways to calm and reassure their pets. One easily accessible way is playing music or sounds for the dogs. Little research has been conducted on which specific sounds are calming to dogs in their own home environment. Dog owners in the community were recruited and sent instructions to expose their dogs to four different sound conditions.
    [Show full text]
  • Good Practices for the Feed Sector Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding
    ISSN 1810-1119 [print] ISSN 2070-2493 [online] Good practices for the feed sector Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding FAO ANIMAL PRODUCTION AND HEALTH / MANUAL 24 FAO ANIMAL PRODUCTION AND HEALTH / MANUAL 24 Good practices for the feed sector Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding Editors Angela Pellegrino Missaglia Technical Expert, International Feed Industry Federation (IFIF) Annamaria Bruno Former Senior Food Standards Officer, Codex Alimentarius Commission Secretariat Daniela Battaglia Animal Production Officer, Food and Agriculture Organization of the United Nations (FAO) Published by: Food and Agriculture Organization of the United Nations and International Feed Industry Federation Rome, 2020 Recommended Citation FAO and IFIF. 2020. Good practices for the feed sector – Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. FAO Animal Production and Health Manual No. 24. Rome. https://doi.org/10.4060/cb1761en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) or the International Feed Industry Federation (IFIF) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO or IFIF in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO or IFIF.
    [Show full text]
  • The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus Altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree
    International Journal of Molecular Sciences Article The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree Josphat K. Saina 1,2,3,4, Zhi-Zhong Li 2,3, Andrew W. Gichira 2,3,4 and Yi-Ying Liao 1,* 1 Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China; [email protected] 2 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (Z.-Z.L.); [email protected] (A.W.G.) 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China * Correspondence: [email protected]; Tel.: +86-150-1949-8243 Received: 31 January 2018; Accepted: 16 March 2018; Published: 21 March 2018 Abstract: Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%.
    [Show full text]
  • Phylogenic Study of Lemnoideae (Duckweeds) Through Complete Chloroplast Genomes for Eight Accessions
    Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions Yanqiang Ding1,2,3,4, Yang Fang1,4, Ling Guo1,3, Zhidan Li1,3, Kaize He1, Yun Zhao2 and Hai Zhao1 1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China 2 Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China 3 University of Chinese Academy of Sciences, Beijing, China 4 Key Laboratory of Environment and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China ABSTRACT Background. Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain Submitted 1 March 2017 ZH0202 chloroplast genomes assembled through two methods was 100%, and their Accepted 2 December 2017 sequences and lengths were completely identical.
    [Show full text]
  • To Download the PDF File
    The effect of community complexity on species performance profiles along a thermal gradient David A.J.S. O'Connor This thesis is submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements of the degree of Master of Science in Biology. ©2011 David O'Connor Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-83126-7 Our file Notre r6f6rence ISBN: 978-0-494-83126-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Hide and Seek: Investigation of Biodiversity and Distribution of Cryptic Duckweed Species in Alberta
    HIDE AND SEEK: INVESTIGATION OF BIODIVERSITY AND DISTRIBUTION OF CRYPTIC DUCKWEED SPECIES IN ALBERTA KANISHKA MADUSHANKA SENEVIRATHNA Bachelor of Science, University of Peradeniya Sri Lanka, 2017 A thesis submitted to the School of Graduate Studies of the University of Lethbridge in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in BIOLOGY Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Kanishka Madushanka Senevirathna, 2021 HIDE AND SEEK: INVESTIGATION OF BIODIVERSITY AND DISTRIBUTION OF CRYPTIC DUCKWEED SPECIES IN ALBERTA KANISHKA MADUSHANKA SENEVIRATHNA Date of Defense: November 24, 2020 Dr. R. Laird Associate Professor Ph.D. Dr. T. Burg Professor Ph.D. Thesis Co-Supervisor Dr. J. McCune Assistant Professor Ph.D. Thesis Examination Committee Member Dr. S. Wiseman Associate Professor Ph.D. Thesis Examination Committee Member Dr. T. Russell Associate Professor Ph.D. Chair, Thesis Examination Committee Abstract This thesis focused on the development of molecular tools to characterize the biogeographical distribution of two cryptic Lemna species suspected to be present in Alberta, Lemna turionifera and L. minor. I developed eight species‐specific primers for five morphologically similar Lemna species. Our preliminary data show L. minor is present in multiple wetlands in southern Alberta. Subsequently, I used genotyping-by- sequencing technology to study the population diversity of these cryptic Lemna species. Based on analyses of 103 samples at 16,007 single nucleotide polymorphism loci, I provide strong support for genetic diversity existing between L. minor and L. turionifera growing in Alberta. I found significant population differentiation in L. minor but no genetically distinct populations within L. turionifera.
    [Show full text]